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The time schedule for performing the work sponsored by t h i s  
grant has a natural d$vision into three dMtinc t  parts. 

P a r t  1. May 35, 1968 t o  ear ly  Spring 1969 

Part  2. Ihtenuating circumstances. Principal investigator 
had open-heart surgery in June 1969 and a pacemaker 
ins ta l led  i n  September 1969. 

Part  3, Basically from January 1970 to August 1, 1970. 

_1L_ Part 1 wasaproductive period. It s ta r ted  with a series of 
seminars at  West Virginia University, covering a variety of topics, 
which contributed t o  sme of the material in the notes tha t  mare 
completed i n  Part  3. A paper was delivered a t  the Spring (1969) 
meeting of the American Physical Society i n  Washington on one 
aspect of the work, 'plaximtrm Power Transfer Coefficierit Between Two 
Confocal Apertures". A paper on t h i s  subject was w e l l  i n  progress 
when the  pr incipal  investigator moved t o  Florida Technological 
University i n  August 1968. Professor Henderson then collaborated with 
tb2s par t  of the..work and contributed ideas tha t  changed the basic 
format of some of the  proofs, 
i s sue  of J. Opt. SOC. of America as a j o i n t  publication. A t  t h i s  
stage it was thought that progress was being merde on the  computer 
solution of the  resonator problem with an output coupling aperture. 
This work led t o  a revis ion of Cbapters ITT, Sections D and E, of t he  
notes, and the addition of Appendices C and B. 

It appeared i n  the  November, 4968 

Some revision of the objectives of the grant also occurred 
during t h i s  period. Because rhere was 110 way for the principal  
investigator t o  pay himself as a consultant or even to rea l ly  
buy released time, as original ly  planned, the work time for  the 
grant was contributed during evenings, holidays, and weekends, and 
the corresponding reoney (with approval from NASA) saving was used 
t o  es tabl ish a CO laser laboratory a t  Florida Technological 
University and to2begin some thin film studies .  

Part 2 *  The only accomplishments duriag this period was t o  
e d i t  the  ga l l ey  proof f o r  the November, 1969, art icle i n  JOSA. 

Par t  .3 was another productive period. Chapters V, V I ,  V I I ,  
and Appendices L, J,  f, L, M, €4 of the  notes on Laser Optics 
were completed. 
of the l a w  of propagation of 8 gaussian beam was discovered, and 
w i l l  l i ke ly  lead t o  a publication. 
about half complete. 

A simplified version of a graphical representation 

9r9~3rari3n of the r?anusc+gpt'is 
The spa t i a l  coherence of opt ica l  resonators 
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was investigated and meaningful, but bot ear th  shaking, conclus$ons 
were reached. It is possible tha t  my derivation of conjugate 
re la t ions  fo r  mutual coherence f o r  the case of a v i r t u a l  entrance 
pupil is 8 new resu l t .  The treatment of coherence in the  notes 
raises some new questions concerning microscope illumination and the  
action of i t e ra ted  phase transformers, 
this period that the computer method for  s o l v h g  the resonator 
problem with output coupling aperture, although technically correct 8 

was not very pract ical .  Progress in building a CO laser Was slower 
than I had hoped, but, nonetheless, sat isfactory.  'One laser is now 
complete except for  one mall machine shop job on one of the  mirror 
mounts. A l l  these things are described more completely i n  the notes 
o r  i n  the Technical B e p a t  t ha t  follows. 

It was discovered ear ly  i n  
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All funds were committed pr ior  t o  the August 1, 1970, terminating 
date of t h i s  grant. 
ing tha t  w i l l  be cleaned up in the near future. The Fflu o f f l c e  of 
Finance and Accounting w i l l  send their o f f i c i a l  report  i n  the near 
future. 

There are a few small accounts t ha t  are outatand-- 

14y records are as follows: 

Fees and Wages 
Prof. A. D. Levine, Consultant 
Prof. W. E. Vehse, Consultant 
Prof. W. M. Squire, Consultant: 
Principal Xnvestigator, Consultant 
Principal Xmestigator, released time 
Rodney Wamiltoa, Student Assistant 
Linda Stover, Typist 
Margaret Cooperp Drafting 

Capital Equipment 

IR Detector 
Wrrors, lenses 
34ounts and Translational Stages 
Pressure Gauges 

Jkpenses 

Glassware, mars 
Chemicals and Salt F l a t s  
DuplZcating, Library Service, Computer 
Travel 
Publication Fee 
Electronlc Parts, Tools, Apparatus 

Qverhead and Indirect  Cost @20X Provisional 

$1 300.00 
435 a 00 
357.50 

1,300.00 
654 60 
195.00 
47.03 
25 0 00 --- 

4,334 e 13 

1,945.00 
I 927.90 
1,130.00 

459.00 
5 461 .OO 

115.37 
263.69 
223.06 
39.90 

191 0 so 
421.35 

1 304 57 

1 , 400.00 

Total 

University Contribution (through facul ty  salary) 

12  500.00 

657 e 90 

TOTAL $13, I57 e 90 
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(a) Xaximum Power Transfer Between Confocal Apertures_ 

This work was culminated P f i t h  a publication, Reprints 
were sent  t o  the  Optical Systems Branch and the Grants and 
Contracts Office a t  a pr ior  date. 
repr in t  
f i n a l  reports.  

For completeneas,this 
cons t i tu tes  the last  pages of the  f i r s t  two of these 

(b) Technical Notes on "Laser Optics"; Distr ibut isn L i s t  

Appendices G and E, were dis t r ibu ted  a t  a pr io r  date. 
report  contains the recent additions t o  t h i s  work t ha t  begins 
with Chapter V and Appendgx 1. 
reproductions of the Table of Tontents. 
the first tvo copies of t h i s  report  contain the old notes 
as well as recent additions. 
been sen t  to: 

Revisions t o  Chapter IV, Section I) and E, along wtth 
This 

The next two pages are 
For completenessp 

Copies of these notes have 

2 copies: complete set: VASA Optical System Branch 
Atten: Yelson McAvoy, Code 524 

1 copy: complete sat: Dr.  John R. Bolte, 3TU 

1 copy: complete set" f)r. V i l l i a m  C. Oelfke, FTU 

1 copy: complete set: 

1 copy- comulete set: Dean Robert Herstens FTU 
2 copies: complete set WASA Grants and Contracts Office 

8 copies: recent additions NASA Grants and Contracts Office 

1 copye recent additions Office of rlniversity Tesearch 

Rodney Ramilton, FTU 

(wfth chis final report) 

(trith t h i s  fj-nal report)  

(with thfs  final report)  Florida Technological University 

1 copy; recent additions NASA Optical Systems Branch 
(with t h i s  f i n a l  report) c /o  Nelson McAvoy, Code 524 
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( c )  a d i a t i o n  P a t t e r n  from a Laser wi th  an Qutput  Couplins Iris 

The problem t o  be solved is c l e a r l y  s p e c i f i e d  by 
(46) and Appendices G and I3 ( f o r  combining s o l u t i o n s )  of t h e  
notes .  The i n t e q r a l  Equation (46) has t h e  form 

CUS) 
b, t3 -c d c  

Qi G 
I n  t h e  fol lowing,  t h e  s u b s c r i p t  ''t" is dropped, bu t  we keep i n  
mind t h e  f a c t  t h a t  two s o l u t i o n s ,  
combined t o  form one 
Car tes ian  component f o r  each mode. 

&yi and $e, must be 

FB 
The p lan  o r i g i n a l l y  proposed t7as t o  r ep resen t  by s e v e r a l  

p o i n t s  $ay 25) a c r o s s  the  mi r ro r  a p e r t u r e  ( r a d i a l l y  outward from 
c e n t e r  t o  edge). a t  p o i n t s  between t h e  chosen 
25 was then  to be  obtained u s b g  the Lagrange i n t e r p o l a t i o n  
formula 

The va lue  of 

I n t e g r a t i o n s  would then  be  performed us ing  something l i k e  B 
Gauss i n t e g r a t i o n  formula, vhere  i t  appeared t h a t  48 or more 
p o i n t s  would be  requi red  t o  achieve t h e  requi red  accuracy, 

Y Y  
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The r e s u l t  is thus a 25x25 non-Fermitian complex matrix t o  solve 
f o r  tlze 25 complex values that define Since there  are 625 
matrix elements, each ~ i t h  48x48 - 2304 terms i n  the summation, 
a t o t a l  of 48x43~625 - l>44n3!W terms must be computed f o r  each 
matrix” Each term involves the calculat ion of two Bessel functions 
of large argument, one Lagrange coefficient. ,  one s i n e  function, 
one cosince function, etc. I f  59 basic number manipuXations are 
needed for  each Bessel function, and 40 fo r  the rest of an element 
computation, there are 1 _I 440,000 ,x53xSrhc4@ = 1 4 4 x d  basic number 
manipulations. A t  109 microsecods per manipulation, this “brute 
force method” still represents 0.456 years to compute the elements 
of one matrfx f o r  one ’ value. 

‘p . 

x 
bnstead of consuming one year of computer t i m e  t o  solve one 

problem, the  pr incipal  investigator decided i t  was a more prudent 
investment t o  look for be t t e r  methods, which has been the case. 
There has9 however been no major hreak through fo r  a prac t ica l  
solut ion of th i s  problem. The group a t  B e l l  Laboratories has 
apparently encounted similar d i f f i c u l i t i e s  i n  achieving accurate 
answers t o  a general problem of t h i s  type. 
publication) however has continued to obtain r e su l t s  beyond 
those for special cas‘& by T. Li and R. Zucker (BSTJ, 57 (19671, 
pp 984 986 and h i s  earlier work (BSTJ, 46 (1965), pp 333*363. 

f4cCumber (recent 

It should be pointed out t h a t  the s ing le  pass symmetric 
situarZon is beginning to  look feas ib le  using t h i s  method. 
time required t o  obtain the  elements of one matrix would be 
i n  the order of a few 3 t0.4 hours. 

The 

(d) Laser Laboratory: T h i . - F ’ _ l ~  

Wgth the help of W o  John R. Rafte and an ass i s tan t ,  Bruce 
Stockton, who both contributed t i m e  t o  t h i s  project ,  we now 
have one C02 laser nearly complete, and have begun construction 
of another, A l l  t h a t  remains on the  f i r s t  is a small mechanical 
a l t e r a t ion  i n  one of the mirror mounts. Because we are still  i n  
the learning stage on this  project,  it is  reasonable t o  expect 
a t  least another year wlll  be needed t o  bring anything new t o  
f ru i t ion .  A t  the moment, we are s t rans ly  attracted t o  experi- 
ments tha t  involve the  interact ion of l i g h t  with the depletion 
layer  i n  semLconductor junct3.ons. 

(e) G x h i c a l  Solution of Propagation Laws f o r  a Gaussian_Beam 

A graphic representation of Gaussian Beam Optics is 
described i n  Section C of Chapter VI1 (pp 81-90) tha t  is 
simpler than analagous methods (all  re la ted  throueh conformal 
mapping) described by Collins (ApD. Qpt. 3-, 1P64) pp 126311274), 
Chu (BSTJ, Feb. (1966), PP 287-299), Gordon (BSTJ, July (19641, 
pp 1026 271, and f<&gelnik and Li ( fbP.  Opt-  s 3, (1966) I) PP 
1550.1567. This .nethod has a d i r ec t  correspondence t o  the 



laboratory s i tua t ion  in that  a travexing l i g h t  beam is 
represented by a horiaontal. straight l i n e  with a l inear  
scale, and is a correspondingly convenient teaching a id  
fo r  the principles of Gaussian beam propagation. After 
checking one additional referencep the principal invest-. 
igaror plans to send a short article to  Applied Optics. 

.: . . 
Lle 

..* 

(f) l_llunination of a Xicroscoze ." 

An equation ia derived t a  relate the mutual coherence 
function between conjugate points i n  the entrance and exit 
pupils. This dergvation on pages 102-lTj of the notes f o r  
the case of a v i r t u a l  entrance pupil may be something new. 
This r e s u l t  has been used by the  pr incipal  investigator t o  
examine ways t o  improve the degree OP coherence when i l lumi-  
nating a microscope s l i d e  with an incaherent extended source. 
The purpose i n  mind is, of course9 t o  hcrease the resolving 
power of the instrument. A l l  attempts thus f a r  have, i n  the  
last analysis, arnounted physically t o  focusing the  source t o  
as small as an area as possible a t  stme plane ahead of the 
microscope slide. 

The derivation given by Zernike (Physica, V, (1938) 
op 785 795)  is a l i t t le d i f fe ren t  than t h a t  leading to  
Bquation (146) of the notes. If di f f rac t ion  of the con- 
dermslng lens i s  taken in to  account (instead of extendinq 
limits of h t e g r a t i o n  to  i n f in i ty ,  as we did- fox a real 
entrance pupil), the conclusion is: 
oohemwe .in a pZane itttmvinated though a tena ie the 
acme, whethsr a soume of un5fom brightness be h q e d  
on the pZane or pZaced d4rectQj behind the tew. Vith 
t h i s  scheme of illumination, it follows tha t  the degree 
of coherence is a180 independent of lens  aberrations 
and that a cheap condensing l ens  is j u s t  as good as a 
well corrected achromat, 

The degrss of 
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I f ,  instead of focusing the source on the  s l ide ,  the  
source is f f r s t  focused to a point well i n  f ront  o f  the  s l i de ,  
the degree of coherence is grea t ly  enhanced. (Also, more 
expensive lenses  are required. ) The pr inciple  inves t i g a t a r  
is not aware of the extent to  which these ideas are used i n  
ac tua l  prac t icep  but i s  in  the process of col lect ing several 
references on the subject t o  see i f  there  is anything new 
here. 

(g) Resonator Mutual Coherence 

The treatment of s p a t i a l  mutual coherence i n  resoriators 
i n  Section R of Chapter VI (pp 68 t o  75 of the notes) is 
d i f fe ren t  from anythfng this outhor has seenp even though the 
end r e s u l t s  f a l l  p re t ty  much i n to  the  '2zZmad~ WSZZ k m f 9  
domain. The idea that mutual coherence can be improved bY 
passage through an i t e r a t ed  system of phase transformers is 
something t h a t  should be tes ted  experimentally. An experi- 
ment is being designed t o  do t h i s  very thing. 

(h) Beam Spot S ize  

Although too late t o  include i n  the notesp the following 
derivation f o r  beam spot size OR the  two mirrors of a 
resonator v e r i f i e s  Gordon and RogelaJtk's r e s u l t  s t a t ed  on 
page 99 of  the notes. 

The law OE propagation can_ be wr i t ten  (Equation 112): 
-. 

i z z  

/-t (""")' 
X R  

With mirrors placed at ZL and 2, these g2ve: 

I 
I 

% 
_cLc 

I 2 1  / + 4 ,  k , ) L  I+ Cq(+&)f- 
L ( 2 )  

i d=zL"t, - I + (  %$- - j +  / A )  tTL 
Rr ii?t 

__I_ 
d 

Ls, 
Now let Nz be a mirror located a t  a pos l t ive  dis tance 
and w i t h  pos i t ive  €I, according t o  s ign conventaons i n  the 
propagation laws. The ago cases to consider f o r  M ,  are 

2, 
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show in Fltgure 2. 
the rules for computing the 
parameter g for the cavity give 

In both cases, 

Figure 2. 

The result of substituting into (2) is 

Substitution of the first for one of the denominators of the second 
gives 

. 
and alternately 

which can also be mitten- 



The solution I s  
- 4, 

*;k 
’-- - I_ 

$4 
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A. Rexroad, Barvey N. ~ '"laxiurn Pover Transfer Coefficient 
Betveen Two Confocal. Apertures ' $  Bull. Am, Phys. SOC. 
-7 14 ?o, 4, (1969), 9 .  619, paper UC9. 

B. %exroad, Barney fi?., and 3, J. Eenderson,@'Maxintum Powex- 
Transfer Coefficient Between Two Confocal Apertures 
3. Opt. SOC, Am, 59, (I?E9), DP. 1425-1421. 

C. Rexroad, Harvey FT.* Laser Optics", A set o f  notes prepared 
fo r  the Q p t i c a l  Systems Branch of ?&SA as described i n  fYX-b 
ahove. 

D. "Graphical Representation of Gaussian ham Opt i ca l  Systems' . 
Preparation of a manuscript fa about half complete. 
mre reference article must be obtained before it is sent 
to Applied Optics. Basis fo r  the article is the material 
of Chapter VII, Section C of notes (see 111-b above). 

One 

E. The material described i n  Sectfons f, 8. and h 05: the 
Technical Report are the  possible basis for additional 
pubrications. The t h h  film work of Section (d) is in 
early stages of developem, but could r e su l t  i n  
publications 
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One result  of t5is grant has been the t ra ining of the pr incipal  
investigator i n  the  f i e l d  of Laser Optics. Re is very knowledgeable 
of the classical aspects of t h i s  subject,  aQd,*with 8 l i t t & e . e f f o r t ,  
can in te rpre t  l i t e r a t u r e  on the quantum f i e l d  theory and statistical 
aspects. 
the  need arises. 
knowledge and capabi l i t i es  w i l l  be expanded, 
future ,  theoret ical  projects  outlined under 111-e, I11 f ,  and 111.-g 
w i l l  be completed. 
interference experiments from the point of view of Quantum 
Electrodynamics. 
(b) Future GraFSs- 

I hope you T d l l  feel f r e e  t o  use him as a consultaEt, i f  

For the  immediate 
By corttinuing work along these same l ines ,  the 

Plans are then t o  examine the details of basic 

I do not ~Jisli t o  propose another grant of t h i s  type a t  t h i s  
time. 
and it becomes possible to buy released time f o r  the principal  
investigator,  I'll recons9der. 

After P J ~  get  things going smoothly a t  t h i s  new Universitys 

The One thing tha t  is desperately needed is money t o  support 
students. I n  addition t o  the  educat.i,onal benefi ts  t o  the students 
involved. they w i l l  provide some r e l i e f  t o  my work load (and t o  
tha t  of other facul ty  members) so more of the future  work described 
can be accomplished. 
of supporting one or two part- t ime student a s s i s t an t s  over the  
next two years a t  a cost of about $3,000 pea: year for the  two of 
them u 

I w i l l  call. soor! t o  explore the poss ib i l i ty  
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A ,  BASIC EQUATIONS 

CHAPTER v 

kiRVEGU IDE APPROACH 

I n  Appendix A i t  - w a s  shown t h a t  t h e  v e c t o r  Helmholtz equat ion  

0 , can be w r i t t e n  i n  a form t h a t  i s  more 
2 

s u i t a b l e  f o r  a beam gene ra l  r ec t ed  a long  t h e  a x i s ,  and 

wi th  a dependence of . These r e s u l t s  beginning wieh 

Equation A38 are 

and 

where 

and 

The components t r a n s v e r s e  t o  t h e  a x i s  w e r e  g iven  by: 
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The boundary c o n d i t i o n s  a t  a p e r f e c t l y  conduct ing s u r f a c e  w i t h  normal 
h 
n are: 

B, SOLUTION IN CARTESIAN COORDINATES 

I n  C a r l e s i a n  coord ina te s  a t r a n s v e r s e  component of electric 

f i e l d  i s  g iven  by (From 5.1) : 

and 

The g e n e r a l  s o l u t i o n  may then  be obta ined  by a supe rpos i t i on  of 

express ions  of t h i s  type ,  where a l l  v a l u e s  of and 

cons i s tent w i t h  

are poss ib l e .  I n  waveguides t h e  boundary cond i t ions  restrict  

and t o  one o r  another  of c e r t a i n  e igen  ya lues .  
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From Equat ion (5.2) i t  can  be  seen  t h a t  TEM modes are only  

p o s s i b l e  i f  

I Q I (5.7) 

I f  waves are v e r y  n e a r l y  TEM waves, as i s  t h e  case f o r  t h e  o p t i c a l  

r e s o n a t o r  equa t ions  de r ived  us ing  F resne l  zone d i f f r a c t i o n  formula 

and t h e  s m a l l  a n g l e  approximation, t hen  is  almost zero.  For 

such waves, w 

T 

The f a c t o r  has  been i n s e r t e d  t o  account  f o r  t h e  degeneracy. 

To see how t h i s  comes about ,  n o t i c e  t h a t  i n  a r e c t a n g l e  of dimen- 

s i o n s  ., t h e  s o l u t i o n s  must have t h e  form 

so  t h a t  they  van i sh  a t  t h e  boundaries ,  

e Thus , , and - 
are i n t e g e r s .  S ince  
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t h e  number of p o s s i b l e  va lues  of determines t h e  number of 

s o l u t i o n s  having t h e  same Q" . I f  w e  p l o t  

each p o i n t  corresponds t o  a p o s s i b l e  

a g a i n s t  Rx , nl 
( f i x ,  n,) . These p o i n t s  

€a 
U 

* e 4 0  

b e - @  

Figure  5.1. I l l u s t r a t i n g  t h e  number of states wi.th the 

same = t h e  number of p o i n t s  

a long a circle.  

are uniformly d i s t r i b u t e d  over  t h e  p lane ,  and each occupies  a u n i t  

2 2  
area. The p o i n t s  on t h e  c i r c l e  tfl! are those  correspond- 

ing  t o  t h e  same . Thus, t h e  number, , of s o l u t i o n s  

wi th  i s  t h e  area of  t h e  c i rc le  

Then c .. n i s  t h e  number wi th  

between .r and , and i s  p ropor t iona l  t o  

J 

C, COMPARISON WITH QUANTUM MECHANICS 

S u b s t i t u t i o n  of 

$5- 
rEm (5.10) 
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i n t o  t h e  Helmholtz equat ion ,  = Q ~ gives: 

b ir2 = b I f  ' r+- - i2 , w e  can  a g a i n  pu t  ).. 

t o  o b t a i n :  

Now suppose t h a t  i s  a ve ry  s lowly va ry ing  f u n c t i o n  of 3 . For 

such a wave, t h e  t e r m  i s  n e g l i g i b l e  compared t o  t h e  

2i term. Also, s i n c e  8' i s  s m a l l ,  t h e  l a s t  two terms are 

of no importance.  Equation (5.10) then  reduces  t o  

(5.12) 

* 

Now cons ider  t h e  quantum mechanical d e s c r i p t i o n  of a p a r t i c l e  

that  h a s  been d i r e c t e d  along the a x i s  w i t h  speed V . In  t h e  

2 0 , w e  can  p u t  

. Again, i f  

, we o b t a i n  

(5.13) 
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i which i s  L a t i c a l  t o  Equation (5.  2)  above. Thus, t h e  analogy 

between t h e  spreading of t h e  t r a n s v e r s e  c r o s s  s e c t i o n  of a l i g h t  

beam w i t h  t h a t  of a wave packet  r ep resen t ing  a p a r t i c l e  appears  

r a t h e r  s t rong .  Although approximations were used t o  show t h i s  

analogy, i t  i s  no t  obvious t h a t  they  are e s s e n t i a l .  It should be 

remarked t h a t  Maxwell's equat ions  have t h e  same form i n  Classical  

Electrodynamics as i n  Quantum Electrodynamics.  The i n t e n s i t y  

p a t t e r n s  f o r  such problems t u r n  o u t  t o  be  i d e n t i c a l .  

connect ion between classical and quantum electrodynamics is  

e l u c i d a t e d  i n  "Quantum Mechanics" by Leonard Schi f f  (McGraw-Hi l l )  

T h i s  

pp. 390-95. 
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CMPTER VI 
PARTIALLY COHERENT POLYCHROI\IP;fIC LIGHT 

A, INTRODUCTION* 

I f  p rope r ly  app l i ed ,  t h e  p r i n c i p l e s  of phys ics  and mathematics 

t h a t  were known as e a r l y  as 1963, and poss ib ly  as soon as 1955, 

appear  t o  a g r e e  wi th  experiments t hus  f a r  performed i n  t h i s  f i e l d .  

It is ,  however, d i f f i c u l t  t o  g l ean  from p resen t  t rea tments  t h e  

p e r t i n e n t  p o i n t s  needed t o  answer many b a s i c  ques t ions  concerning 

t h e  coherence of l i g h t  beams, i n t e r f e r e n c e  p a t t e r n s ,  and t h e  pre- 

c ise  cond i t ions  r equ i r ed  f o r  observing b e a t s  between two s i g n a l s .  

The purpose of t h i s  chap te r  is  f i r s t  t o  c o l l e c t  t h e  fundamental 

i d e a s  i n t o  a reasonably  complete, b u t  nonethe less ,  terse, package; 

and secondly t o  t reat  some of t h e  problems of i n t e r e s t  i n  laser work. 

The new t h i n g s  t h a t  have evolved o r  t h i n g s  t h a t  have been c l a r i f i e d  

are : 

(1) Monochromatic l i g h t  has  been assumed f o r  much of t h e  work 

i n  t h e  earlier chap te r s .  It i s  known, bu t  n o t  o f t e n  

emphasized, t h a t  i t  i s  r e a l l y  t h e  Four i e r  t ransforms of t h e  

f i e l d  components t h a t  obey t h e  b a s i c  d i f f r a c t i o n  i n t e g r a l  

equat ion .  Technica l ly ,  i t  fo l lows  t h a t  t h e  foregoing 

i n t e g r a l  equa t ions  f o r  laser modes r e a l l y  apply  t o  t h e  

Four i e r  t ransforms.  

*A l a r g e  p a r t  of t h e  in t roduc to ry  material of t h i s  s e c t i o n  fo l lows  t h e  
t rea tment  i n  Born and Wolf4. 
d a t e  i s  t h a t  of Mandel and WolfI3. 
Sudarshan14 i s  a l s o  h igh ly  recommended bu t  i s  more concerned wi th  quantum 
aspects t h a t  are not  t r e a t e d  i n  t h e  p re sen t  work. 

The b e s t  and most complete t rea tment  t o  
A f a i r l y  r ecen t  book by Klauder and 



35 

(2)  It i s  a l s o  known t h a t  t h e  Four i e r  t ransform o'f t h e  mutual 
w 

coherence f u n c t i o n  1"1 (a t i l d a  denotes  Four i e r  t ransform)  

obeys a wave equat ion .  Propagat ion laws and a d i f f r a c t i o n  

i n t e g r a l  can,  consequent ly ,  b e  obta ined  f o r  r . 
equa t ion  €or laser modes can b e  obta ined  f o r  P 

fb 

An i n t e g r a l  
rv 

t h a t  is  

analagous t o  Equation 4 5 .  The upshot of t h i s  r e v e l a t i o n  i s  

t h a t  i d e a l i z e d  laser l i g h t  has  a n  almost  complete mutual 

space  coherence as w e l l  as t h e  b e t t e r  recognized tempora l , .  

and corresponding long coherence l eng th .  The la t te r ,  of 

course ,  arises from t h e  very  narrow frequency spread t h a t  i s  

achieved w i t h  t h e  combination of a h igh  r e sona to r  Q a long wi th  

t h e  supe r regene ra t ive  e f f e c t  of  t h e  l a s i n g  medium. (Coherence 

l e n g t h s  of a few hundred k i lome te r s  have been achieved) .  

and 

( 3 )  The important  f a c t o r  f o r  ob ta in ing  b e a t s  between two s i g n a l s  

i s  temporal coherence and not  merely t h e  narrowness of t h e  

frequency spread ,  as i s  sometimes wrongly assumed. Beats are 

provided t h e  frequency com- I po s s i b l  e when 

ponents  have t h e  r equ i r ed  temporal coherence.  On the  o t h e r  

hand, t h e  c o n d i t i o n '  a s s u r e s  t h e  r equ i r ed  

temporal coherence.  

The d i s c u s s i o n  of t h i s  chap te r  makes u s e  of Classical  

Electrodynamics.  Although a d i f f e r e n t  viewpoint  can  be gained 

us ing  Quantum Electrodynamics and a number r e p r e s e n t a t i o n  of a 

boson f i e l d ,  so f a r  as t h e  au thor  knows, t h e  experimental  r e s u l t s  
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pred ic t ed  by t h e  two t h e o r i e s  f o r  t h e  experiments considered are 

i n  agreement. To answer ques t ions  concerning t h e  a c t u a l  thermo- 

dynamic equ i l ib r ium d e n s i t y  of photons wi th  c e r t a i n  energy and 

phase,  f o r  example, i t  i s  necessary  t o  r e s o r t  t o  t h e  quantum 

theory.  
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B , REPRESENTATION OF ACTUAL POLYCHf?Oi%TIC F IELDS 

A t  a given p o i n t  p$ i n  space  and i n s t a n t  of t i m e ,  f , t h e  

l i g h t  coming from a source  i s . g e n e r a l l y  made up of l i g h t  from a 

very  l a r g e  number of d i f f e r e n t  sources ,  each having atomic 

dimensions.  By t h e  pr inc ip le  of superposition, a Car t e s i an  com- 

, is Cf!) 
ponent (such as br ) of f i e l d ,  denoted by 

obta ined  by adding t o g e t h e r  t h e  c o n t r i b u t i o n s  from each o s c i l l a t o r .  

where each frequency, , has  a phase and ampli tude,  

I f  

tween 3, 

r e p r e s e n t s  the amplitude f o r  waves w i t h  frequency be- 

and y+db , t h i s  equat ion  can  b e  writ ten: 

It is  convenient  t o  d e f i n e  1 as: 

i s  uniquely s p e c i f i e d  by t h e  a c t u a l  
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It i s  a mathematical  convenience t h a t  l e a d s  us  t o  inc lude  both  

ampli tude and phase i n  one symbol 

I i 

From a s t r i c t  mathematical  p o i n t  of view, w e  could begin  wi th  

t h e  f a c t  t h a t  any real  S e c t i o n a l l y  cont inuous f u n c t i o n ,  such as 

and r e c a l l i n g  t h a t  is  real, i t  i s  apparent  t h a t  t h e  second 

of t h e  i n t e g r a l s  must be  t h e  complex conjugate  of t h e  f i r s t .  

Theref o r  e, 

3 
~ ~ i ~ ( ~ )  where R e  means "real part ,of".  Again w e  d e f i n e  p(f) and 

s o  t h a t  

(55) 

>kThroughout t h i s  t r ea t i s e  a t iZda  w i l l  be  used t o  denote  t h e  
FOURIER TRANSFORM, and a n  a s t e r i s k  f o r  t h e  complex conjugate .  



39 

Because of t h e  r e a l i t y  requirement f o r  6 4  , no t  on ly  

la() , but  a l s o  ~ ' d ' ~ ~ . )  and cyl.l') are completely 

s p e c i f i e d  by t h e  p o s i t i v e  f r equenc ie s .  

The frequency spectrum of a real s i g n a l  i s  found wi th  w e l l  

e s t a b l i s h e d  methods. Equation (55) i s  m u l t i p l i e d  by 

and i n t e g r a t e d  from - @  t o  +W : 

which because of '(55) is:  

9 0 
- 

c 
L 

e 

carrier has  two p o s i t i v e  frequency components. That is: 

s o  t h a t  t h e  two p o s i t i v e  frequency components are and 6 

. Using (59) ,  w e  o b t a i n ,  
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Examples of frequency and phase moduzation are g iven  i n  

Appendix I. A u s e f u l  r e l a t i o n  f o r  combining any two s i n u s o i d a l  

s i g n a l s  is  g iven  i n  Appendix J. 

Summarv 

. .  

The superposition of s i g n a l s  of  d i f f e r e n t  f r equenc ie s  and 

c 
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Using 

and 

along w i t h  

t h  

can be  der ived .  



42 

C, HILBERT TRANSFORM RELATIONS 

S t a r t i n g  w i t h  t h e  las t  of equat ions  (61) ,  

w e  d e f i n e  a f u n c t i o n  ) of t h e  complex v a r i a b l e  

i 7  - - 

Y W  Clear ly ,  t h i s  func t ion ,  and a l s o  , s a t i s f i e d  t 
4 

Riemann equat ions ,  and 5 -  

and i s  t h e r e f o r e  a n a l y t i c .  Th i s  permi ts  t h e  u s e  of t h e  Cauchy 

i n t e g r a l  theorem 

where t h e  pa th  of i n t e g r a t i o n  has  been s e l e c t e d  t o  be t h e  lower 

h a l f  p l ane  of F igu re  7.  Thus, 

1 - 
e 
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Figure  7.  Pa th  of i n t e g r a t i o n  used t o  d e r i v e  t h e  HILBERT 
TRANSFORM ( o r  RRAMERS RRONIG) r e l a t i o n s  f o r  

0 
(A)  

is t o  b e  eva lua ted  as Y 0 , and e n l a r g e s  t o  

cover  t h e  e n t i r e  h a l f  p lane .  Because o f . t h e  l a r g e  magnitude of 

Z i n  t h e  denominator near  t h e  real  a x i s  a t  and of t h e  

, t h e  f o u r t h  of , t h a t  vanishes  when 1 b 
f a c t o r  

t h e s e  i n t e g r a l s  vanishes .  The f i r s t  and t h i r d  g ive  t h e  Cauchy 

p r i n c i p l e  va lue  (which w e  denote  by P ) .  Thus, 

OIP - - * 

I f  t h e r e  are no po le s  i n  t h e  lower h a l f  p lane ,  s e p a r a t i o n  of t h e  

rea l  and imaginary p a r t s  g ives :  
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A 

and ('7 are s a i d  t o  s a t i s f y  t h e  HILBERT t ransform 

r e l a t i o n s .  These r e l a t i o n s  hold t r u e  f o r  any a n a l y t i c  func t ion  

having no s i n g u l a r i t i e s  i n  t h e  lower h a l f  complex p lane ,  and 

whose i n t e g r a l  ove r  t h e  curve  c van i shes  as . When 

H 
app l i ed  t o  magnetic s u s c e p t i b i l i t y  , , t h e s e  are 

3 

known as t h e  M E R S - K R O N I G  relations. 
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D, COHEREXE (INTRODUCTION AND DEFINITIONS)  

. ,  

The r e s u l t  of t h e  superposition of ampl i tu re s  according t o  

Equation (50) o r  (51) is, a t  least f o r  a s u f f i c i e n t l y  s h o r t  t i m e ,  

a s i n u s o i d a l  f u n c t i o n  having some average  frequency and complex 

ampli tude.  I n  a c t u a l  cases t h i s  average frequency and complex 

ampli tude changes wi th  time not  on ly  i n  a r e g u l a r  way which one  

o b t a i n s  i f  t h e  components superposed remain f i x e d ,  b u t  a l s o  

because t h e  set 0.f o s c i l l a t o r s  c o n t r i b u t i n g  t o  t h e  f i e l d  w i l l  

va ry  i n  a random way. I f  t h e  frequency and complex ampli tude 

do no t  change apprec iab ly  i n  a t i m e  , w e  r e f e r  t o  t h e  s i g n a l  

as having a coherence time of . The coherence Zength is  t h e  

d i s t a n c e  t h e  wave t ravels  i n  t h e  coherence t i m e :  . When 

a s c r e e n  i s  i l l umina ted  by a n  extended incoherent  source ,  t h e  

f l u c t u a t i o n s  a t  two p o i n t s  on t h e  s c r e e n  w i l l  be  c o r r e l a t e d  pro- 

vided t h a t  f o r  a l l  sou rce  p o i n t s  t h e  pa th  d i f f e r e n c e  does n o t  

exceed t h e  coherence l e n g t h  6 * . W e  are thus  l e a d  t o  t h e  

concept of a region of coherence around any p o i n t  i n  a wave f i e l d .  

The phys ica l  q u a n t i t i e s  t h a t  can  be  observed when random 

f l u c t u a t i o n s  occur  u s u a l l y  invo lve  averages  over  pe r iods  of t i m e .  

The mutual coherence function, , and t h e  compZex degree of 

coherence, f i n e ,  are t h e  important  parameters  i n  

many experiments t h a t  r e s u l t  from averaging over  t i m e .  For t h e  

f i e l d s  and a t  p o i n t s  and i n  

space  ( o r  a t  t h e  same p o i n t  b u t  w i t h  d i f f e r e n t  o p t i c a l  pa ths  o r  

p a s t  h i s t o r i e s  denoted by and ), w e  d e f i n e :  
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Here we  sometimes p u t  

The 

Sch\ 

complex degree of  coherence is  then  de f ined :  complex degree of  coherence is  then  de f ined :  

t hen  guarantees  t h a t  
3 



E, INTERFERENCE: YOUf4G ‘S EXPERIMENT 

) with  mutual t Consider two s i g n a l s  

(4) . I f  t h e s e  s i g n a l s  are p r o j e c t e d  over  equal  

o p t i c a l  p a t h s  t o  a r r i v e  a t  a common p o i n t  Q ,  t h e  t o t a l  s i g n a l  a t  

, by t h e  p r i n c i p l e  of s u p e r p o s i t i o n ,  is: 

so  t h a t  

The 

leaving  

imaginary p a r t s  o f ’ r h e  l a s t  two terms cance l  one another ,  

o r  

This  r e s u l t  is  q u i t e  genera l  and p o i n t s  o u t  t h e  importance 

of t h e  degree of coherence f o r  determining t h e  i n t e n s i t i e s  i n  

i n t e r f e r e n c e  p a t t e r n s .  
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Young’s experiment i l l u s t r a t e d  i n  F igu re  8 i s  a good example 

of t h e  use  of t h e s e  i d e a s .  I n  t h i s  experiment I may b e  less 

than  u n i t y  because l i g h t  a r r i v i n g  a t  Q over  t h e  d i f f e r e n t  o p t i c a l  

pa ths  and w a s  emit ted from S a t  d i f f e r e n t  t i m e s .  I n  f a c t ,  

F igure  8. Experimental  
arrangement f o r  
Young’s experiment.  

w e  expect  t h a t  i f  t h e  d i f f e r e n c e  i n  pa th  l e n g t h  $. 

g r e a t e r  t han  t i m e s  t h e  coherence t i m e  of t h e  source ,  v i s i b l e  

i n t e r f e r e n c e  f r i n g e s  w i l l  no t  be  p o s s i b l e .  The v i s i b i l i t y  of 

fringes i s  def ined  as 



.The g e n e r a l  appearance  of P can  b e  o b t a i n e d  by combining Equa t ions  

(52) and ( 6 4 ) ,  which g i v e s  

-J2n[@-~ ?,+ 
The l a s t  f a c t o r ,  

3 
i s  a r a p i d l y  o s c i l l a t i n g  f u n c t i o n  of 

t i m e  when ;t) i s  a p p r e c i a b l y  d i f f e r e n t  from $Ji* and t h e  t i m e  
2 

i n t e g r a t i o n  i s  z e r o  f o r  t h e s e  c o n d i t i o n s .  I f  1/ " Y , t h e  

i n t e g r a l  o v e r  t i m e  g i v e s  2 7 . Thus,  v e r y  n e a r l y  

where 4 2 d l  z2 T@ 

I f  t h e  a m p l i t u d e s  oi I&) and Q2 ((el) a r e  a p p r e c i a b l e  o n l y  

i n  a narrow r a n g e  between - and 5 + & , i t  
2 2 

is conven ien t  t o  pu t  W g +, 4 , t o  g e t  

+t,t')4 I 'J+~? 
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In  Young's experiment,  t h e ' q u a n t i t y  i s  the  t i m e  requi red  
I 
Y e  t o  t ravel  a few wavelengths,  and has  a t y p i c a l  s i z e  of - e. 

A t y p i c a l  magnitude of i s  then  2 T V 7 g  wi th  

- 
'h =.-Yz 

a n  extreme v a l u e  of 7T' (%I . I f  r ( F ) 4 4 4  I , so t h a t  

'9" can be  rep laced  by zero over  t h e  range of i n t e g r a t i o n ,  

t h e  q u a n t i t y  i n  b r a c k e t s  w i l l  be  independent of T .  

i t  i s  a l s o  a real  number. For 

If 

- and a v e r y  sharp  s p e c t r a l  
t -  

l i n e ;  and a long t i m e  coherence of t h e  sou rce  ', 
L 

", c o n s t a n t x  

, t h e  v i s i b i l i t y  becomes 0 If c 

I f  arises pure ly  from a d i f f e r e n c e  i n  pa th  l e n g t h s ,  

More g e n e r a l l y ,  

so  t h a t  - 
Other .  examples of i n t e r f e r e n c e  wi th  p a r t i a l l y  coherent  l i g h t  

w i l l  be  considered a f t e r  w e  f i r s t  examine t h e  f i e l d  equat ions  and 

propagat ion p r o p e r t i e s  of t h e  mutual coherence f u n c t i o n  r . 
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F, 

I f  t h e  complete f requency spectrum a t  a p o i n t  i n  

space  of a component of f i e l d  ampli tude is  known, t h a t  component 

can be  found from Equation (52):  

(72) 

I n  Equat ions (61a) w) and M) must now be  regarded 

as f u n c t i o n s  of p o s i t i o n .  It fo l lows  

equat ions  t h a t  i f  v(H1 s a t i s f i e s  t h e  

Consequently,  s a t i s f i e s  t h e  

Equation (72) w i t h  g i v e s  

immediately from t h e s e  

wave equat ion ,  so  does 

wave equat ion .  Opera t ion  on 

o r  

;21pp,Y 
I f  t h i s  i s  now m u l t i p l i e d  by d j  and i n t e g r a t e d  

between t h e  l i m i t s  - , t h e  Four i e r  i n t e g r a l  theorem g i v e s  

Consequently 
2 

(73) 
0 

For polychromatic l i g h t ,  i t  i s  s t r i c t l y  t h e F o u r i e r  t ransform,  Y 

of t r a n s v e r s e  f i e l d  components t h a t  s a t i s f y  t h e  'Helmholtz equat ion .  
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The mutual coherence f u n c t i o n ,  

k'  3 ' 3  
9 

I f  /fi s a t i s f i e s  a wave equat ion .  

t h e  r e s u l t  is w i t h  vi 
i s  he ld  f i x e d ,  and w e  o p e r a t e  

2 

Since 

Thus, 

i s  he ld  f i x e d .  I n  t h i s  equat ion  propagates  according t o  a 

wave equat ion  and takes d i f f e r e n t  v a l u e s  a t  p o i n t s  
4 

/r; and t i m e  

d i f f e r e n c e s  . Because r ap id  t i m e  v a r i a t i o n s  of l i g h t  waves can  

CD no t  be observed, t h i s  d e s c r i p t i o n  i n  terms of - 
e s p e c i a l l y  u s e f u l .  I f  p o i n t  , is  he ld  f i x e d  whi le  

a similar r e  

The frequency spectrum o 

as t h a t  of 



54 
By r epea t ing  t h e  procedure used t o  o b t a i n  (73) from ( 7 2 )  and t h e  

wave equat ion ,  i t  can  be  shown t h a t  bo th  and . 

sat  i s  f y t h e  Helmholtz equat ion  : 

b%4 Ad 

e 
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G, . PROPAGATION OF MUTUAL COHERENCE 

I f  u s e  i s  made of t h e  f a c t  t h a t  r" s a t i s f i e s  t h e  wave 

equat ions  ( 7 4 )  and ( 7 5 )  t h e  mutual coherence between two f i e l d  
=-P 

p o i n t s  d' 
b 

can  be  computed i n  terms and fig of t h e  va lues  of r 

F i g u r e  9.  D e f i n i t i o n s  of t h e  v a r i o u s  
. v e c t o r s  used i n  f i n d i n g  

i n  terms of i t s  

v a l u e s  7 )  on source  Q; 

on some s u r f a c e  . The s o l u t i o n s  of Equations ( 7 4 )  and (75) can 

be  expressed i n  t e r m s  of t h e  sources  which l e a d s  t o  Equation ( 4 D ) ;  

The Kirchhoff s u r f a c e  i n t e g r a l  r e p r e s e n t a t i o n  of ( 4 D )  i s :  

Using t h i s  equat ion ,  r (4 (8) -9 ) can  be  expressed i n  terms 

can  be  expressed i n  t e r m s  of . These equat ions  
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a *a 
S u b s t i t u t i o n  of (78) i n t o  (77) t hen  g i v e s  t h e  d e s i r e d  r e s u l t :  

- -  

I 
9 

on t h e  r i g h t  s i d e  is 

and t h e  g r a d i e n t s  are a l l  sou rce  g r a d i e n t s .  



57 

The s u b s c r i p t  "Ret ' !  means t h a t  t h e  e n t i r e  express ion  must be  

eva lua ted  a t  t i m e s  . Thus, 

Again i t  i s  convenient  t o  d e f i n e  

. .  

and,  t o  make t h e  stationary assmpti-on t h a t  p) i s  independent of 

t h e  t i m e  s e l e c t e d  for beginning t h e  averaging  process :  

With t h e s e  s u b s t i t u t i o n s ,  Equation (79) becomes: 
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The methods of t r e a t i n g  real s i g n a l s  t h a t  are summarized i n  

Equat ions (60) and (61) can  also be  used f o r  . For t h i s  purpose,  w e  

Equation ( 8 4 )  can then  be  m u l t i p l i e d  by and i n t e g r a t e d  

. A p a r t s  i n t e g r a t i o n  can  be  used where d e r i v a t i v e s  

wi th  r e s p e c t  t o  occur .  I f  w e  assume t h a t  have ze ro  

v a l u e s  when 

i m p o s s i b i l i t y  of p e r f e c t  coherence", the r e s u l t  is: 

a c o n d i t i o n  w e  might ca l l  " t h e  
3 



59 

H, 

t h e  

and 

and 

t h e  

FAR FIELD SOLUTION 

and are very l a r g e  compared t o  t h e  dimensions of 

source ,  i t  is  convenient t o  put 

t o  l e t  (O,>p,) and (&) 

d i r e c t i o n s  of t h e  v e c t o r s  R, and Rz r e s p e c t i v e l y .  A f t e r  i n t e g r a -  

i c a l  coord ina tes  t h a t  s p e c i f y  

t i o n  over  t h e  s m a l l  dimensions of 
4 

j % i  and , t h e  v a r i o u s  

terms i n  (87) then  have t h e  form 

The g r a d i e n t  of t h i s  f u n c t i o n  then  

Figure  10. I n  t h e  f a r  f i e l d  
i t  is  canve$ient 

where is  a 

becomes : 
-Q t o  p u t  w, = R,* +PA,, 

c o n s t a n t .  

t 
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0 
become l a r g e ,  the  f i r s t  term dominates t h e  f u n c t i o n ,  

so 

58 I 
2 
f a r  f i e l d  i t  

is  n o t  s u r p r i s i n g  t h a t  t h e  space  g r a d i e n t s ,  o r  changes w i t h  d i s t a n c e ,  

t u r n  o u t  t o  be  a long  t h e  d i r e c t i o n  of propagat ion .  



I ,  PROPAGAT I ON I N AN O P T  I CAL RESOLlATOR 

I n  an  o p t i c a l  r e s o n a t o r ,  o r  a n  i t e r a t e d  system of phase 

61 

t ransformers ,  t h e  l i g h t  i s  g e n e r a l l y  d i r e c t e d  a long  t h e  a x i s  of  t h e  

system and has  t h e  c h a r a c t e r  of r a d i a t i o n  i n  t h e  f a r  f i e l d  of 

ano the r  sou rce  as i l l u s t r a t e d  i n  F igure  11. The f a r  f i e l d  Equat ions 

(89) can  then  be  used t o  compute t h e  source  g r a d i e n t s  i n  Equat ion 

(87) .  With 

F igure  11. I l l u s t r a t i n g  t h e  idea  t h a t  l i g h t  leav ing  
t h e  mi r ro r  of a n  o p t i c a l  r e sona to r  (o r  a 
l e n s  of i t e r a t e d  phase t r a n s f o r m e a ) h a s  
t h e  c h a r a c t e r  of r a d i a t i o n  i n  t h e  f a r  
f i e l d  of another  source.  
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The same approximations t h a t  l e a d  t o  t h e  BASIC DIFFRACTION INTEGRALS 

Namely, FOR OPTICAL, RESONATORS (Eqns. 20, 2 1 ,  2 2 ) ,  w i l l  a g a i n  b e  invoked. 

I?, = = d. except  i n  t h e  phase f a c t o r  where 

Rectangular Coordinates 

CyZindricaZ Coordinates 

where 

= ) -  

r a d i i  of t h e  m i r r o r s .  

# , and are 
1 

and 



@ +& r h  fi, 9) i s  t h e  mutua l  coherence f o r  t h e  f i e l d  l e a v i n g  t h e  m i r r o r .  
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J, THE VAIi CITTERT - ZERNIKE THEOREM 

I f  Equation (92) above is  m u l t i p l i e d  by SL- and 

t h e  i n t e g r a t i o n  is  performed from 0 t o  CD , t h e  dependence on 3" 

can b e  recovered s i n c e  

This c a l c u l a t i o n  i s  performed i n  Appendix L ,  where t h e  r e s u l t  f o r  a 

Gaussian ampli tude . d i s t r i b u t i o n  of f r equenc ie s  is  given by Equat ion 

L 8 .  According t o  t h i s  appendix,  i f  w e  pu t  

The r e s u l t  w i l l  be.  

where 

i 103 



Here i t  has  been assumed t h a t  t h e  c r o s s  c o r r e l a t i o n s  a r e  a l l  z e r o .  

when one i n t e g r a t i o n  i s  The d e l t a  f u n c t i o n  then  p u t s  2 - 4  " R  
performed, g iv ing  

- c as 18 ' B ~ , , )  -J: 05 (8' &,)a 
e e r(X1) , ( 9 ~ )  

The i n t e g r a l  i n  t h i s  equa t ion  i s  

$y' 

A t  t h i s  p o i n t  we make t h e  u sua l  approximations 

This  l a s t  approximation simply l i m i t s  t h e  range  of over  which 

-P3 
t h e  f i n a l  equa t ions  a r e  v a l i d .  Typ ica l ly ,  <23+ $2& Y 

s o  we a r e  r e q u i r i n g  P$ 4 . It i s  a l s o  convenient  
&Y 

t o  p u t  

- 

+ T 
= d i s t a n c e  between p o i n t s  & 0% 

T ~ U S ,  p,~-i"L+ = 2d dl2 

Also,  assuming t h a t  FI%J)  : F (d') , (94 )  reduces t o  
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i s  c o n s t a n t ,  t h e  d e f i n i t e  i n t e g r a l s  

and 

can be  used t o  i n t e g r a t e  t h i s  express ion;  t o  o b t a i n  

where by 

The func  

vanishes  when - Thus, t h e  d i s t a n c e  between two 

p o i n t s  r equ i r ed  f o r  a n  apprec i ab le  degree  of coherence i s  

The f r equenc ie s  p re sen t  i n  can be  examined by 

combining 

a) 
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t o  o b t a i n :  

4 

A' 

Since  t h e  averaging over  can be  extended t o  very  long l i m i t s ,  

t h e  f i r s t  i n t e g r a t i  e l ta  f u n c t i o n ,  -LdJ . The second 

term a l s o  g i v e s  a d e l t a  f u n c t i o n ,  

Thus, t h e r e  i s  no c o n t r i b u t i o n  t o  except  where i s  a 

1 .  

frequency t h a t  i s  common t o  both  
PY 

The frequencies, 

mutuaZZy common t o  both 

are j u s t  those that are 

For t h e  sun, t h e  c e n t r a l  common frequency i s  about 

. With -1 c y c l e s  p e r  second corresponding t o  = ) D  
.J .. 

- 0  r a d i a n s , t h e  d i s t a n c e  over  which a n  apprec i ab le  mutual coherence 

occurs  i s  Y 
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K ,  RESOfJATOR SELF CCffdS I STEFST CQHERENCE 

The remarkable t h i n g  about  t h e  Van C i t t e r t -Ze rn ike  r e s u l t  i s  

t h a t  a non zero c r o s s  c o r r e l a t i o n  i s  obta ined  s t a r t i n g  wi th  a zero 

c r o s s  c o r r e l a t i o n  ove r  t h e  e n t i r e  o r i g i n a l  source .  How t h i s  comes 

about  i s  i l l u s t r a t e d  i n  F igu re  1 2 .  The f i e l d  a t  p o i n t  ‘I’ can 

be  obta ined  by i n t e g r a t i o n  over  t h e  source.  S ince  t h e  f i e l d  a t  

depends on a n  i n t e g r a t i o n  over  t h e  same source ,  i t  i s  not  
(0 

s u r p r i s i n g  t h a t  they  are now 

F igure  1 2 .  I l l u s t r a t i n g  t h e  improvement of mutual 
coherence as l i g h t  propagates  through 
an  i t e r a t e d  system of phase t ransformers .  
A t  t h e  start  

c o r r e l a t e d  s t a t i s t i c a l l y .  An i n c r e a s e  i n  temporal coherence would 

a l s o  b e  expected because t h e  c o r r e l a t e d  f i e l d s  would g i v e  t h e  

and when t h e  0) g r e a t e r  c o n t r i b u t i o n s  t o  f i e l d s  a t  

i n t e g r a t i o n s  are performed. Thus, t h e  s t a t i s t i ca l  c o r r e l a t i o n  

should improve wi th  each i t e r a t i o n .  I f  w e  assume t h a t  t h i s  process  

converges t o  some l i m i t i n g  va lue ,  even tua l ly  
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i s  a complex c o n s t a n t .  
0 

Usin d s  t o  t h e  

i n t e g r a l  equat ion;  

9, 

This  expres s ion  should be  compared w i t h  t h e  s i n g l e  pas s  mode 

equat ion  developed earlier.  The requirement  f o r  t h e  f i e l d  t o  r e p e a t  

i t s e l f  w a s  

Using t h e  b a s i c  d i f f r a c t i o n  i n t e g r a l  of Equat ion ( 2 4 )  t o  compute 
e oad 

i n  terms of and dropping t h e  s u b s c r i p t  ri g ives :  +I 

For t h e  case ,of r e c t a n g u l a r  symmetrx wi th  ’: Q , t h e  focus  

cond i t ion ,  bo th  Equat ions (99) and Equation (101) can be solved.  
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3 For m i r r o r s ,  o r  phase t ransformers  of dimensions 3 
u 

Y 

and similar expres s ions  f o r  t h e  wi th  i n t e g r a t i o n  l i m i t s  

changed t o  

The s o l u t i o n s  of t h e s e  i n t e g r a l  equat ions  are t h e  p r o l a t e  

sphe ro ida l  a n g l e  func t ion  which s a t i s f y :  



The change of v a r i a b l e ,  x)' d $L and X I  = R f , reduces 

the  f i r s t  of E q u a t i o n ~ ( 1 0 2 )  t o  t h e  form 

Comparison wi th  the  second of E q u a t i o a ( l 0 3 )  then  g ives :  

and 

Combining t h e s e  r e s u l t s  we have: 
3 

. Resorlator s e l f  c o n s i s t e n t  s o l u t i o n  



bga' 
i s  s u f f i c i e n t l y  l a r g e ,  t h e  a n g l e  f u n c t i o n s  c a n  be  

r e p l a c e d  by 

as e x p l a i n e d  i n  Appendix F .  A c t u a l l y ,  t h i s  approx imat ion  i s  

r a t h e r  good even f o r  F r e s n e l  numbers, 
x2 
2nd 

a s  s m a l l  as 3 o r  

4 .  Thus, f o r  each f requency  a and f o r  t h e  l o w e s t  mode, we have;  

pa, 

The t o t a l  P i s  t h e n  o b t a i n e d  by add ing  t h e  ones  t o g e t h e r  f o r  

each  f requency .  I f  a  Gauss ian  d i s t r i b u t i o n  i s  assumed, and t h i s  is  

f ""a;&=?*?= 
m u l t i p l i e d  by and i n t e r g r a t e d ,  t h e  f i n a l  t o t a l  

mutua l  coherence f u n c t i o n  is  o b t a i n e d :  



This integral has been evaluated in Appendix L where it can be 

seen that this gives: 
- 

A e e e 

Putting ~ J z  

So that the complex degree of coherence is: 

2,&, . 
Y 

--a_ --- 
e f?dY ( 4 ~ ) ~  



+ + 
I f  l i g h i  (IS e q u a l  i n t e n s i t y  i s  used from p o i n t s  Jj  8- fi 
t o  form a n  i n t e r f e r e n c e  p a t t e r n ,  t h e  i n t e n s i t y  a c c o r d i n g  t o  

Equa t ion  (70) w i l l  be:  

and t h e  v i s i b i l i t y  w i l l  be  

The second f a c t o r  does  n o t  f a l l  o f f  a p p r e c i a b l y  u n l e s s  i t  i s  

l a r g e r  t h a n  s a y  y2i . , t h i s  r e q u i r e s :  

a  c o n d i t i o n  t h a t  i s  e a s i l y  met i n  l a s e r s .  T y p i c a l l y ,  $< I e n ) )  

whereas  &j * 180 m? ) and BP M 10 ,000 ,000  cm. I n  f a c t ,  i t  

i s  probab ly  n o t  p o s s i b l e  t o  o b s e r v e  t h i s  term u s i n g  l a s e r  r a d i a t i o n .  

It m i g h t ,  however, be  p o s s i b l e  t o  s e e  such  an  e f f e c t  i n  a n  i t e r a t e d  

sys tem of  phase  t r a n s f o r m e r s  t h a t  i s  used t o  f i l t e r  w h i t e  l i g h t .  
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The las t  two phase f a c t o r s  i n  (106) are  s m a l l  f o r  t y p i c a l  

lasers and are of l i t t l e  importance.  The r e s u l t  can b e  

summarized by s t a t i n g  t h a t  the degree of mutual coherence i s  

essentiaZZy constant over the cross section o f  the laser beam. 

F i n a l l y ,  i t  should be remarked t h a t  t h i s  a n a l y s i s  d i d  n o t  

i nc lude  an  a c t i v e  l a s i n g  medium. 

are w e l l  known. 

a r e g e n e r a t i v e  o s c i l l a t o r  i s  many t i m e s  smaller than  t h e  frequency 

width of t h e  p a s s i v e  r e sona to r .  Most of t h e s e  e f f e c t s  can  b e  p u t  

i n t o  t h e  r e s u l t s  of t h i s  paper simply by us ing  t h e  much smaller 

The e f f e c t s  of such a medium 

B a s i c a l l y ,  t h e  frequency width p e r  mode i n  such 

t h a t  one o b t a i n s  w i t h  such a system. 
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Th i s  chapter  i.s p r i m a r i l y  concerned wi th  t h e  b a s i c  l a w s  r equ i r ed  f o r  t h e  

p r a c t i c a l  des ign  of t h e  laser r e s o n a t o r s  and f o r  determining t h e  propagat ion  

p r o p e r t i e s  of laser beams through o p t i c a l  systems. The fundamental l a w  of 

propagat ion  of Gaussian beams w a s  ob ta ined  by Boyd and Gordon' i n  1961. 

improved v e r s i o n  of a g r a p h i c a l  s o l u t i o n  of t h i s  l a w  suggested by Gordon15 is 

given f o r  t h e  f i r s t  t i m e  i n  t h e  p r e s e n t  work. The r u l e s  f o r  image formation 

fo l low those  given i n  a review ar t ic le  by Kogelnik and L i  

by Kogelnik . These r u l e s  i n c l u d e  image format ion ,  cu rva tu re ,  and r a y  trac- 

i n g  us ing  t h e  ABCD l a w  and r ay  t r a n s f e r  matrices. These i d e a s  n a t u r a l l y  l e a d  

t o  t h e  t o p i c  of s t a b i l i t y  and r e sona to r  f r equenc ie s  i n  o p t i c a l  r e s o n a t o r s ,  

where a d d i t i o n a l  in format ion  is  given by Gordon and Kogelnik18 and by Boyd 

and Kogelnik . 

An 

15 , and an  earlier one 

16 

19 

The image r u l e s  accord ing  t o  scalar d i f f r a c t i o n  fo l lows  t h e  t rea tment  of 

4 Collins2'  and of Born and Wolf . The conjugate  r e l a t i o n s  f o r  t h e  mutual co-  

herence f u n c t i o n  between p o i n t s  i n  t h e  en t r ance  and i n  t h e  e x i t  p u p i l s  f o r  a 

real  e n t r a n c e  p u p i l  are given i n  t h i s  r e f e r e n c e  ( 4 ) .  So f a r  as t h i s  au tho r  

knows, t h i s  same r e s u l t  f o r  v i r t u a l  en t r ance  p u p i l s  i s  developed h e r e  f o r  

t h e  f i r s t  t i m e ,  where t h e r e  i s  a s l i g h t l y  new t w i s t  t o  t h e  development i n  t h a t  

i n t e g r a t i o n  over  an i n f i n i t e  p r i n c i p a l  p l ane  i s  n o t  necessary .  The conjugate  
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r e l a t i o n s  f o r  mutual coherence c o n t r a d i c t  the commonly be l i eved  i d e a  t h a t  the 

degree of coherence i n  a microscope s l i d e  i s  i d e n t i c a l  t o  t h a t  ob ta ined  wi th  an 

incoherent  source  f i l l i n g  t h e  condense l e n s ,  and sugges t  t h e  o l d  i d e a  of focus ing  

t o  a p o i n t  i s  the way t o  o b t a i n  s p a t i a l  coherence from an incoherent  source .  

B ,  LAW OF PROPAGATION OF A GAUSSIAN NAVE 

Consider t h e  confoca l  r e sona to r  shown i n  F igure  13 w i t h  squa re  mi r ro r s .  
. .  

I 

Figure  1 3 .  A p a r t  of t h e  confoca l  r e s o n a t o r  . 

geometry used t o  d e r i v e  Equation (109) 

The modes f o r  such a r e sona to r  are g iven  through t h e  i n t e g r a l  Equat ions 33 

and 3 4 .  A s  shown i n  Appendix F (Eqn. 38F), t h e  Sphero ida l  a n g l e  func t ions  are 

t h e  s o l u t i o n  of t h i s  i n t e g r a l  equat ion ,  and f o r  even a moderately h igh  F resne l  

number, t h e s e  s o l u t i o n s  reduce t o  t h e  Hermite-Gauss func t ions  of Equation 46F.- 

S t a r t i n g  wi th  t h e  Hermite-Gauss func t ion  f i e l d s  on t h e  l e f t  mi r ro r  of 

F igure  1 3 ,  t h e  b a s i c  d i f f r a c t i o n  i n t e g r a l  can  be  used t o  o b t a i n  the  f i e l d s  a t  

a p l ane  P .  I n  s o  doing,  Boyd and Gordon obta ined  f o r  one transverse component 



T h i s  e q u a t i o n  a p p l i e s  t o  t h e  wave p r o p a g a t i n g  t o  t h e  r i g h t  i n  F i g u r e  

1 3  and is  v a l i d  f o r  t h e  wave t h a t  p a s s e s  th rough  t h e  r i g h t  m i r r o r  p r o v i d e d  

i t  i s  m u l t i p l i e d  by t h e  a p p r o p r i a t e  t r a n s m i t t i n g  f a c t o r  o f  t h e  m i r r o r .  T h i s  

e q u a t i o n  i s  a l s o  v a l i d  f o r  t h e  s t a n d i n g  waves i n s i d e  t h e  c a v i t y  when 
&$r 3 

i s  r e p l a c e d  by 1 3 , and,  as a consequence,  p r o v i d e s  t h e  b a s i s  f o r  

d e t e r m i n i n g  r e s o n a n t  f r e q u e n c i e s .  The l a w  of p r o p a g a t i o n  f o r  s u ~ h  beams 

f o l l o w s  from t h i s  e q u a t i o n .  For t h e  mz@ 8' 0 mode ( t h e  most i m p o r t a n t )  
2 

t h e  beam w i d t h  i s  d i c t a t e d  by t h e  f a c t o r  ex$ 
8 

I f  t h e  beam w i d t h ,  6iaP"" , i s  d e f i n e d  by  t h e  '/e v a l u e ,  t h i s  f a c t o r  

becomes t$?Xp - (k .b43 \;% SO t h a t  

The s u r f a c e  o f  c o n s t a n t  phase a r e  g iven  by 



7 9  

The dependence on through 9 i s  very  small and can be  neg lec t ed ,  g iv ing  

which has t h e  appearance of - b 

Thus, the beam r a d i u s  is  

The c r o s s  s e c t i o n  of any Gaussian beam i s  t h e r e f o r e  
@ 

s p e c i f i e d  by 

and is  c h a r a c t e r i z e d  by the s p o t  s i z e  o r  width,  , and r a d i u s ,  

any p o i n t  

These equat ions  

Equa on 

t h e  

have a s impler  form when expressed i n  terms of va lues  a t  the  

beam " w a i s t "  , , and . This  l a s t  r e s u l t  can b e  

o b t a i n  from (108) and (109) which g ives  

A s  w i th ,  f i n i t e ,  - 0 

2 
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El imina t ion  of ''&I i n  (111) gives  

Law of Propagat ion;  Gaussian B e a m  

o r  

w i t h  t h e  a d d i t i o n a l  u s e f u l  r e l a t i o n  

By d e f i n i n g ,  , t h e  l a w  o f  propagat ion  

can b e  expressed i n  a s i n g l e  equa t ion  

where 

which is easy  t o  v e r i f y  by s e p a r a t i o n  of t he  r ea l  and imaginary p a r t s .  



C , G?AP!i I CAL SOLUP ION 

For a  g r a p h i c a l  s o l u t i o n  of t h e  p r o p a g a t i o n  l a w ,  i t  i s  

c o n v e n i e n t  t o  measure  d i s t a n c e  i n  u n i t s  o f  2 and t o  i n t r o d u c e  a  s c a l e  

f a c t o r  Ita' t h rough  the d e f i n i t i o n s :  

With t h e s e  s u b s t i t u t i o n s  Equa t ions  (112) become 

B 
and t h e  law f o r  change of  beam r a d i u s  f o r  a  l ens ,  - I 

becomes 
a s9 
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Equat 

I a t  t h e  beam w a i s t :  

Combining t h e s e  l a s t  equat ions  g ives :  

4 - - -  
and has  s o l u t i o n s  where t h e  complex number, , on t h e  l e f t  i s  

equal  t o  t h a t  on t h e  r i g h t ;  

b where 0 and 

Sepa ra t ion  of real and imaginary g ives :  
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The f i r s t  two of t h e s e  equat ions  immediately g i v e  t h e  u s e f u l  

r e l a t i o n  

r e s p e c t i v e l y  g i v e s  : hf- - .3) w z  
. Thus, on t h e  p l ane  curves  of 

d 

are circles of r a d i u s  w i t h  c e n t e r  a t  1 Y and 

circles of r a d i u s  1 I and c e n t e r  a t  ( 
The s o l u t i o n  of t h e  propagat ion  l a w  i s  g iven  where a p o i n t  ( = (A,2&%) 

co inc ides  wi th  a p o i n t  on t h e  

v a l u e  of and a v a l u e  of  

,AT) p lane ,  each of  which now d e f i n e s  a 
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a 

- -  

The s impl i fy ing  f e a t u r e  of t h i s  s o l u t i o n  i s  that,  as t h e  wave propagates ,  

t h e  p o i n t  ( - - simply moves t o  t h e  r i g h t  a t  cons t an t  d i s t a n c e  

from the h o r i z o n t a l  axis.  An a u x i l i a r y  scale f o r  the 

p lane  is n o t  necessary ,  changes i n  

of c i r c l e s  and can b e  found from e i t h e r  t h e  h o r i z o n t a l  o r  ver t ica l  

scale. 

are i n  t h e  same u n i t s  as t h e  r a d i i  

The c h a r t  thus  proposed f o r  t h e  s o l u t i o n  of a c t u a l  problems i s  t h a t  of 

F igure  1 4 .  Numbers have n o t  been a t t a c h e d  t o  t h e  scales because t h e i r  

i n  a c t u a l  problems is d i c t a t e d  by the range  of beam widths  o r  

one wishes t o  cons ider .  rangehopera t ing  d i s t a n c e s  
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d e s c r i b e s  a beam of wid th  c 8 and Q 
Iq Figure  15  l i n e  

r a d i u s  c r: - 9  a t  A, . A s  i t  moves t o  t h e  r i g h t  t h e  r a d i u s  

approaches - a6 a t  where i t  has  a minimum width of w o = L )  The 

r a d i u s  thenilbecomes smaller u n t i l  i t  reaches  A2 . Beyond t h e  beam 

approaches a p l ane  wave as i t  progresses  toward t h e  f a r  f i e l d .  

pos'hi te  and 

The width o f  

t h e  beam g e t s  c o n t i n u a l l y  l a r g e r  throughout t h e  journey beyond 

trace B6-.. 
l e n g t h  F= 9 /2,8 i n s e r t e d  a t  8,  t o  change t h e  r a d i u s  from c: lL 

c( w i t h  no change i n  . The c losed  loops  i n  F igu re  16 

i l l u s t r a t e s  t h e  a c t i o n  of a p o s i t i v e  l e n s  of f o c a l  

1 
4 

i l l u s t r a t e s  a non-confocal laser c a v i t y .  A s  a n  example of t h e  u s e  of  t h i s  

c h a r t ,  suppose w e  wish t o  design a laser w i t h  t h e  fol lowing s p e c i f i c a t i o n s :  

one f l a t  mi r ro r ;  one curved. 

f i e l d s  same as confoca l  

out + / a t  r n i w o v  

em between m i r r o r s  

beam t o  be expanded by f~~~~~ a w i t h  l e n s e s  and 

made p a r a l l e l  a l l  i n  a s h o r t  d i s t a n c e .  



A 



Figure  1 6 .  Graphic r ep re sen t -  I 

a t i o n  of l a s e r  I 
r e s o n a t o r s ,  and of a ! 

beam expander.  
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A convenient  choice  f o r  "a" i s  , which g ives  (from E q a 1 2 1 )  t h e  
m 

correspondence: 

O F  I . I 
(122) 

I 

The curve  - 8 .  k, of F igu re  16  r e p r e s e n t s  such a laser.* 

A t  7 , a d i s t a n c e  of A =  ) from t h e  f l a t  m i r r o r  

a t  t h e  r a d i u s  i s  c 1 and r e q u i r e s  a mi r ro r  w i t h  

s curva tu re  from + t o  - 

w i t h  t h e  same magnitude. This  m i r r o r  i s  p laced  a t  and moves t h e  beam 

c h a r a c t e r  around t h e  cons t an t  i s  t h e  

r e t u r n  t r i p  t o  t h e  f l a t  mi r ro r .  

f o c a l  l e n g t h  j== e 

Actua l ly ,  t h e  curved mi r ro r  could j u s t  as w e l l  be  a t  i n  which' 

I a l s o  r e p r e s e n t s  t h e  beam i t t e d  through t h e  f l a t  
thP 

mir ro r .  A nega t ive  l e n s  has  been p laced  a t  which moves us t o  p o i n t  

I The reason  i s  s o  t h e  passage from one curve t o  t h e  next  can be  

made i n  a s h o r t e r  d i s t a n c e ,  

cu rva tu re  t o  C =  
a converging l e n s  changes t h e  

we then  have t h e  d e s i r e d  ou tpu t  beam wi th  

. The f o c a l  l e n g t h s  of t h e  

2-t - e p3g.I +h/r 
Both t h i s  and t h e  graphic  s o l u t i o n  due t o  Gordon have t h e  l i m i t a t i o n  

of no t  having a l l  p o s s i b l e  p o i n t s  conta ined  w i t h i n  a c losed  area as i s  t h e  

case  wi th  t h e  analagous Smith c h a r t  f o r  t ransmiss ion  l i n e  problems. I n  

both ,  t h e  f a c t  t h a t  b/ i s  p ropor t iona l  t o  makes i t  impossible  t o  o b t a i n  

a c c u r a t e  s o l u t i o n s  t o  problems wi th  l a r g e  changes i n  . I n  Gordon's 

____ ~ ~~ 

"(Notice t h a t  t h e  confoca l  requirement a long wi th  d=100 cm.  from f l a t  t o  
curved mi r ro r  completely determines W 

'curved (Wcurved 

- = 0.5 (Wflat  = .179 c m . ) ;  
0 - ' f l a t  

= .253 cm); and C = 3 (R = $00 c m . )  - 
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1 
w r e p r e s e n t a t i o n  t h e  - and curves  make up t h e  r e c t a n g u l a r  

curves  were represented  by g r i d ,  wh i l e  c o n s t a n t  

c i r c l e s .  The method he re  has  t h e  advantage of a l i n e a r  scale f o r  

d i s t a n c e ,  and a r e c t a n g u l a r  g r i d  (X4 - 

I curves and -- N 

1 so simple t h a t  scales are ' 

not  necessary  f o r  i t .  

D, IMAGE LANS; ABCn LAW; RAY TRANSFER MATRIX 

I 

Figure  17.  Symbols and s i g n  convent ions used wi th  
image l a w s .  

The usua l  r u l e s  of ray  o p t i c s  apply ,  b u t  t h e  s i g n  convent ions 

used h e r e  are those  shown i n  F igure  17 ,  so  t h a t  

b 
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0 Since E-3 

- 
, i n  terms - and 

of t h e  inpu t  and output  p lanes  shown, t h e  f i r s t  of t h e s e  equa t ions  i s  

(124) 

3 

which can b e  so lved  f o r  

- 
9, 

This  equat ion  has  t h e  form 

and is  c a l l e d  t h e  ABCD l a w .  The va lues  of A, B ,  C ,  D f o r  t h i s  and two 

o t h e r  c a s e s  are given i n  t h e  fo l lowing  

I- 
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Equation (125) has  ano the r  i n t e r p r e t a t i o n .  The a c t i o n  of a n  o p t i c a l  

system can be desc r ibed  by spec i fy ing  f o r  t h e  ou tpu t  ray  both t h e  d i s t a n c e ,  

. h 2  from t h e  o p t i c  a x i s  and t h e  s l o p e ,  C?(z i n  t e r m s  of t h e i r  

va lues  a t  t h e  i n p u t  p lane .  From F igure  1 7  i t  can b e  seen  t h a t  

F igure  18. The e f f e c t  of a n  o p t i c a l  system can be descr ibed  by 
spec i fy ing  t h e  d i s t a n c e  kz and s l o p e  @a of a r a y  
emerging from t h e  output  p l ane  i n  terms of i t s  
v a l u e s  a t  t h e  i n p u t  p lane .  

are nega t ive  i n  t h e  f i g u r e .  S u b s t i t u t i o n  of t h e s e  

va lues  of  into Equation (125) g i v e s  

h 
4 2  

- . s  

&n Apparent ly ,  and B 

f o r  t h e  examples, t h e  c o n s t a n t  is  LI p.  

u n i t y .  Thus, 

and is a l s o  the  ray t r a n s f e r  matrix. 
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For resonators the last factor in Equation (107) due to Boyd and Gordon is 
2 

(130) 

a 

A resonant cavity is formed with two mirrors such that (1) each coincides with 

a surface of constant phase, and (2) the phase difference between the two sur- 

faces is 

Then , 

times an integer, . Thus, 

- (phase) I gives 

Resonant Condition 

I 

~~ 

A confocal resonator is formed by putting 
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and l e a d s  t o  

Confocal Resonant Condi t ion 

'I 

Although s m a l l  i n  comparison t o  

wi th  r/, and pl d i f f e r e n t  from ze ro  are n o t  degenera te  w i t h  t h e  7 

mode. 

, t h e  last t e r m  is  important  because modes 

I n  p r a c t i c e ,  s p h e r i c a l  mi r ro r s  are used, and i t  i s  s u f f i c i e n t l y  a c c u r a t e  

t o  pu t ,  

e ; & -  b e 

s o  t h a t  
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This  r e s u l t  should be.compared t o  t h a t  given by Boyd and Gordon, and a l s o  

t h a t  of Boyd and Kogelnik.  A l l  t h r e e  d e r i v e  t h e i r  r e s u l t s  from o u r  Equation 

(130) which is  i d e n t i c a l  t o  Boyd's and Gordon's Equation (ZO) ,  and a l l  make t h e  

same approximations.  
J 

The t h r e e  equat ions  have t h e  form 

where i s  given by: 

Bell Sys.  Tech J .  

Boyd and Gordon's Eqn. (31) 
$0 (1961) pp. 489-508 

Identica i! Mirrors 

B e l l  Sys. Tech J. 
4 1  (1962) pp. 1347-1369 
Boyd and Kogelnik's-Eqp. (46) 
- 

Eqn. (133) t h i s  paper  

For a r e sona to r  made w i t h  i d e n t i c a l  m i r r o r s ,  

The t h i r d  column then  g ives :  

and Gordon's equat ion  i n  t h e  f i r s t  c o l  

r e s u l t  i n  column two. For i d e n t i c a l  m i r r o r s ,  

When s u b s t i t u t e d  i n t o  column two, t h i s  g ives  

This  f a c t o r  i nvo lv ing  

d i s t a n c e  c a l c u l a t i o n  f o r  resonance,  b u t  does show t h e  cond i t ions  f o r  l i f t i n g  

t h e  degeneracy. The reason f o r  s t a r t i n g  wi th  Equation (130) i n s t e a d  

of a pure Gaussian beam, which approximates t h e  lowest  laser mode, w a s  pure ly  



t o  i n s u r e  t h a t  a  term of t h i s  t y p e  would n o t  be  over looked .  

F,  RESONATOR STABILITY 

S t a b i l i t y  c o n s i d e r a t i o n s  c a n  b e  approached through t h e  r a y  t r a n s f e r  m a t r i x  -- 

methods.  Most r e s o n a t o r s  a r e  a n  i t e r a t e d  sys tem o f  two phase  t r a n s f o r m e r s  l i k e  

- R - fG 
t h a t  shown i n  Equa t ion  ( 1 2 6 ~ )  , b u t  w i t h  d l  = dL = d; f I  - -- 2nd 6, - - 2 J 2 . 4  

The r a y  t r a n s f e r  m a t r i x  of such  a sys tem f o r  one p a s s  i s :  

P u t t i n g  , 

r e d u c e s  t h i s  t o  : 

dp I I  
The r a y  t r a n s f e r  m a t r i x ,  TI , f o r  n p a s s e s  through such a  sys tem i s :  

The m a t r i x  o f  Equa t ion  (135) h a s  t h e  p r o p e r t y ,  t q D -  2 , s o  t h a t  

S y l v e s t e r ' s  theorem can b e  used t o  f i n d  t h e  p roduc t  of t h i s  m a t r i x  w i t h  i t s e l f  



f l  t i m e s .  T h i s  theorem i s  d e r i v e d  i n  Appendix Y, and s t a t e s  t h a t :  

From ( 1 3 ) ,  
I cw g z T Y ~ C P  = a$,$,-1 0 

4 1  )t 
A r e a l  t r a n s f e r  m a t r i x  f o r  fl p a s s e s  can  o n l y  r e s u l t  i f  $H 4 i s  between 

--I and .B , which r e q u i r e s  

- 1  ( zg ,g2 -1 )  s + I  

0 5  a & $ ,  5 22 

0 -C 9, $2 5 1 ,  
T h i s  e x p r e s s i o n  can  a l s o  b e  s t a t e d  i n  t e r m s  of t h e  more g e n e r a l  

A conven ien t  c h a r t  showing t h e  r e g i o n s  o f  p o s s i b l e  s t a b l e  r e s o n a t o r s  is  shown 

i n  F i g u r e  1 9 .  I n  t h i s  d e r i v a t i o n ,  a converg ing  m i r r o r  h a s  a  p o s i t i v e  r a d i u s .  

It s h o u l d  b e  remarked t h a t  a s i m i l a r  approach can  b e  used t o  o b t a i n  Che s t a b i l i t y  

c o n d i t i o n  f o r  p a r t i c l e  a c c e l e r a t o r s  t h a t  use  nltcmzating gradient focusing. 



F i g u r e  1 9 .  I l l u s t r a t i n g  t h e  p e r m i s s i b l e  v a l u e s  of 9) and g2 f o r  
o p t i c a l  r e s o n a t o r s .  The u n s t a b l e  r e g i o n s  a r e  t h e  shaded 
a r e a s .  A p o s i t i v e  r a d i u s  c o r r e s p o n d s ,  i n  t h i s  scheme t o  
a converg ing  m i r r o r .  A c o n f o c a l  r e s o n a t o r  i s  r e p r e s e n t e d  
by a p o i n t  a t  t h e  o r i g i n .  
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G ,  RESONATOR SPOT SIZE 

The g r a p h i c a l  method of Sec t ion  C ( t h i s  chap te r )  i s  a powerful t o o l  

f o r  t h e  des ign  of r e s o n a t o r  cavit ies.  The relative s p o t  s i z e s  on t h e  m i r r o r s ,  

r a d i i  of cu rva tu re ,  and l e n g t h  of c a v i t y  can b e  s e e n  a t  a glance and a d j u s t e d  

t o  f i t  t h e  d e s i r e d  des ign  parameters .  For more q u a n t i t a t i v e  r e s u l t s ,  i t  i s  

s t i l l  t h e  l a w  of propagat ion  of Equations (112) that must be  s a t i s f i e d .  

Gordon and Kogelnik [ B e l l  Sys.  Tech. J. 43, (1964) , Eqn. (19) ]  g i v e  t h e  - 
equat ions :*  

I 
f o r  determining t h e  r a d i i  of t h e  s p o t s  on t h e  two mi r ro r s .  

. .  
H I  IMAGE LAW FOR SCAL4R FRESNEL DIFFPACTION 

The b a s i c  d i f f r a c t i o n  i n t e g r a l  from Ki rchha f f ' s  s u r f a c e  i n t e g r a l  repre-  

s e n t a t i o n  w i l l  now b e  app l i ed  t o  t h e  l e n s  s i t u a t i o n  o f  F igure  20. The f i e l d s  

t o  t h e  l e f t  of t h e  l e n s  can b e  expressed i n  terms of those  on t h e  source ,  Qp , 

The e f f e c t  of t h e  l e n s  i s  t o  advance t h e  phase an  amount p ropor t iona l  t o  

pz-; ?!"sq2 . For a f o c a l  l eng th  # , a t e r m  -k($)must be  added t o  

t h e  phase.  The f i e l d  a t  p o i n t s  t o  t h e  r i g h t  of t h e  l e n s  then becomes 

s 

b 



Figure  20. App l i ca t ion  of t h e  b a s i c  d i f f r a c t i o n  i n t e g r a l  
t o  t h e  problem of image formation us ing  a  l e n s .  

The d i f f r a c t i o n  i n t e g r a l  can aga in  be  used t o  f i n d  t h e  f i e l d  a t  a p o i n t  on the  

image p l ane  i n  terms of i t s  va lues  on 

* 

S u b s t i t u t i n g  m (140) i n t o  t h e  express ion  g ives :  

- - 

where the ex tens ion  of t h e  l i m i t s  of i n t e g r a t i o n  t o  i nc lude  the  e n t i r e  p r in -  



cip.al  plane of t h e  l e n s  i s  j u s t i f i e d  i f  the  ape r tu re  is  l a r g e  compared t o  t he  

beam diameter .  

and l i kewise  f o r  t h e  i n t e g r a t i o n ,  Equation (142) reduces t o  

where use was a l s o  made of 

The remaining i n t e g r a l  over t h e  sou rce ,  9 , i s  zero un le s s  

- $ +  
b 

With t h e  h e l p  of (144) and t h i s  las t  equat ion ,  t h e  f a c t o r  
P 

reduces t o  h2 E , The image law then  is :  
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I I CONJUGATE RELATIONS IN ENTFNKE AND EXIT PUPILS 

Equation (146) j u s t  der ived  assumes a real propagat ion of  l i g h t  

from t h e  o b j e c t  p l ane  rp  t o  t h e  image p lane  , so t h a t  l i g h t  

propagates  according t o  t h e  d i f f r a c t i o n  formula.  This  r e s u l t  c l e a r l y  

a p p l i e s  t o  conjugate  p o i n t s  i n  t h e  en t r ance  and e x i t  p u p i l s  of F igu re  

21a, where t h e r e  is  c l e a r l y  a source  p l ane  9 , image p l ane  

and where Equation (144) is  s a t i s f i e d  between t h e s e  p lanes .  W e  now show t h a t  

Y 

Equation (146) is  a l s o  v a l i d  f o r  conjugate  p o i n t s  i n  t h e  en t r ance  and e x i t  

p u p i l s  of F igures  (21b) and (Z lc ) ,  even though t h e  en t rance  p u p i l s  are 

v i r t u a l .  I n  both  cases, however, t h e  r e l a t i o n  i s  s t i l l  

s a t i s f i e d ,  bu t  w i t h  pN = ,.. =: pogiCIlre ~w&?Y* 

) r ep resen t  t h e  f i e l d  a t  p o i n t s  j u s t  t o  t h e  l e f t  

of t h e  p r i n c i p a l  p lane .  I n  f i n d i n g  t h e  f i e l d  a t  p o i n t s  i n  t h e  en t r ance  

p u p i l  from t h e  b a s i c  d i f f r a c t i o n  i n t e g r a l ,  t h e  l i g h t  must be  t r e a t e d  as 

though i t . h a s  no t  passed through t h e  l e n s .  That is; 

To o b t a i n  t h e  f i e l d s  a t  t h e  e x i t  p u p i l ,  t h e  phase must f i r s t  be advanced t o  

account f o r  passage through t h e  l e n s .  

Q - 
A’ 

The f i r s t  o f . t h e s e  i n t e g r a l s  (146) can  a l s o  be  w r i t t e n  
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. and wi th  t h e  he lp  of (144) becomes 

The i n t e g r a t i o n  i n  b r a c k e t s  i s  i d e n t i c a l  t o  t h a t  i n  Equation (148). 

S u b s t i t u t i o n  of  t h e  va lue  from (148) g i v e s  

wh 

which i s  i d e n t i c a l  t o  equat ion  (146) f o r  t h e  case of a real e n t r a n c e  

p u p i l .  I n  t h i s  d e r i v a t i o n ,  however, i t  i s  n o t  necessary  t o  extend 

t h e  l i m i t s  of i n t e g r a t i o n  over  t h e  p r i n c i p a l  p l ane  ' to cover t h e  

e n t i r e  plane.  



J , ' CONJUGATE REWT 10; IS FOR MUTUAL COHERENCE 

I n  each of t h e  examples of Figure 2 1 ,  t h e  f i e l d  a t  a poin t  on a 

p lane  rQ can be determined i n  terms of t h e  f i e l d  a t  a  conjugate  po in t  on 
A* 

p lane  68 by using Equation (150). It fo l lows t h a t  r between p o i n t s  on 

TQ can be found i n  terms of i t s  va lue  a t  conjugate p o i n t s  on rp . One 

a p p l i c a t i o n  of Equation (150) g ives :  

-* 
I n  the second a p p l i c a t i o n  of (150),  i t  i s  t h e  complex conjugate,  , 

t h a t  i s  being t ransposed,  so  t h a t  

-j*K [B+ Q + - 
e 

6 

The r e s u l t  of combining t h e s e  l a s t  two equat ions  i s :  



J P ~  UJEFUI &P a ~ a / ~ z , s  ~ ~ e ~ r l c n c ~  and phase 
rnodulate8/ slgna1-r 3 d o n  j with 
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Msimum Power-Transf er Coefficient between Two Confocal Apertures* 
HARVEY N. REXROAD AND B. J. HENDERSON 
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This paper discusses a modzcation of a maximum power-transfer theorem whose essential features 
were developed by Alan F. Kay and by Giorgio V. Borgiotti. It is shown that a CZ rotation symmetry with 
respect to the optic axis is a sufficient symmetry restriction for the shape of each aperture, and that the 
phase as well as the amplitude of the illuminating field caa be included in a statement of the theorem if it 
is applied to confocal instead of flat surfaces. The modified statement of the theorem is that a maximum 
power-transfer coefficient between apertures in two confocal surfaces, whose shapes have CZ symmetry, is 
obtained when the illumination of one surface is identical to that of a confocal resonator having the same 
geometry and operating in the lowest diff raction-loss eigenmode, and that the power-transfer coefficient, T, 
is then related to the full-pass diffraction loss, D ,  by T= (1-D)*. I t  is further shown that the eigenfunctions 
of the confocal-resonator equation are identical to those of the extremum power-transfer condition, and 
that these functions form a complete orthogonal set. The actual solution for surfaces of rectangular shape 
is compared with results obtained for illumination with a gaussian-amplitude distribution. It turns out that 
attempts to minimize power radiated into sidelobes by using gaussian-amplitude distributions have been 
very close to the optimum solution of this problem. 
INDEX HEADINGS: Resonant modes; Microwaves; Diffraction. 

The conditions for a maximum power-transfer co- 
efficient between two parallel planar apertures were 
developed in an earlier paper by Kay.’ The similarity 
of these conditions to the confocal optical-resonator 
mode equations was first pointed out by Borgiotti,2 who 
gave a statement of the theorem considered here for the 
amplitude distribution over flat apertures. By launching 
the electromagnetic wave from a confocal instead of a 
flat surface, his results can be stated in a more general 
way because the theorem then applies to the phase as 
well as the amplitude of the illuminating field. The 
double symmetry with respect to x and y of aperture 
shapes used in this earlier work is more stringent than 
is necessary. The theorem is derived here for apertures 
having Cz symmetry with respect to rotations about the 
optic axis. The theorem then states that a maximum 
power-transfer coefficient between apertures in two 
confocal surfaces, whose shapes have Cz symmetry, is 
obtained when the illumination of one surface is identi- 
cal to that of a confocal resonator having the same 
geometry and operating in the lowest diffraction-loss 
eigenmode, and that the power-transfer coefficient, T ,  
is then related to the full-pass diffraction loss, D, by 
T= (1-D)i. It is also shown that the eigenfunctions of 
the confocal resonator equation are identical to those of 
the extremum condition for maximum power transfer. 
These functions also form a complete orthogonal set 
and can be selected such that they represent dehi te  
parity states. 

The physical basis of both the self-consistent-field 
condition for an optical resonator and the expression for 
the power-transfer coefficient are briefly reviewed. 
Throughout, the situation considered is such that the 
fields a t  points on one confocal surface, located in the 
Fresnel zone of the other, can be derived from those on 

* Supported by NASA research grant NGR-10-019-001. 
Alan F. Kay, Trans. IRE AP-8, 586 (1960). 
IGiorgio V. Borgiotti, Trans. IEEE AP 14, 158 (1966). 

the other, using Kirchhoff’s diffraction integral and the 
small-angle approximation. The derivation of the theo- 
rem given here emphasizes the reason for the symmetry 
restrictions on aperture shapes. Basically, the CZ sym- 
metry is required to insure that the eigenfunctions of 
integral equations that occur form a complete ortho- 
gonal set and that they represent definite parity states. 

It has been recognized for some time that the power 
radiated into the side-lobes can be substantially re- 
duced3 by making the amplitude of the illuminating 
field a truncated gaussian distribution. When the power 
transfer of optimum gaussian distributions is compared 
to that for prolate-spheroidal angle-function distribu- 
tions, the solution of the maximum power-transfer 
problem for rectangular apertures, the difference is 
found to be of minor importance. 

RESONATOR AND POWER-TRANSFER 
EQUATIONS 

The physical situation considered and the symbols 
used are both defined in Fig. 1. The field a t  a point such 

FIG. 1. (a) The dimensions and relative orientation of the s heri 
cal (or parabolic) surfaces A and B. (b) Projections of A anJB 0; 
the planes m’ and Op’ illustrating the form of surfaces that satisfy 
the Cz symmetry requirement. 

3L. J. Lader and J. 33. Winderman, Can. J. Phys. 44, 2765 
(1966). 
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as Pb is specified in terms of the fields on the plane 
screen ad by a form of the Kirchhoff diffraction integral 
given by Jackson4 

1 e ikR  

E&,y)= -- /i, d t d ~ { n X E a ( t , d ) X V - .  (1) 
2ir R 

The advantage of starting with this form of the diffrac- 
tion integral is that the precise conditions for which a 
transverse component of E on ma' results only in the 
same component on p/3' are immediately revealed when 
the vector operations are carried out. Because this is a 
valid approximation for the present physical situation, 
it is only necessary to consider one transverse com- 
ponent of the electric field. For the x component, the 
fields on OD' are thus related to those on aa' by 

In the small-angle Fresnel zone, R in the denominator 
is replaced by d ,  but in the phase factor includes the 
quadratic terms , 

If the wave were launched from the spherical surface A 
instead of the plane aa' and generally directed along z ,  
then the field on aa' would lag the field F ( [ , q )  on A 
according to 

Actually, because there is some divergence of the wave 
as it traverses the very small distance [a2- (E2+q2)]/ 
2&, this equation can not be exactly true. The degree 
of approximation that is involved is equivalent to 
beginning with fields on the curved surface and then 
regarding the element of surface area on A to be dtdq .  
This approximation is permitted here because the 
treatment is restricted to optical small-angle situations. 
Although the fields on aa' and A are different because of 

"John David Jackson, Classical Electrodynamics (John Wiley 
& Sons, Inc., New York, 1966), p. 287. 

the phase factor, an integration over the spherical 
surface A may be replaced by an integration over the 
flat projection. These same statements also apply to @p' 
and B, where 

Substitution of Eq. (5) into Eq. (4) gives 

where the customary notation, g, = 1 - d / R ,  and g ,  
= l -d /Rb,  has been adopted. 

' Power-Transfer Caefficient 

If Eq. (6) is multiplied by its complex conjugate and 
integrated over B, the fractional time-average power 
passing through B (equal to that passing through the 
projectionon p@') becomes 

This expression becomes simpler if the launch aperture, 
A ,  is confocal (g,=O) with respect to the target, B. 
Physically, this restricts the launch aperture to one that 
is focused on the target. With g,=O, the power-transfer 
coefficient, T ,  is 

where 



n'ovember1969 P O W E R  T R A N S F E R  B E T W E E N  C O N F O C A L  A P E R T U R E S  141 7 

Resonator Self-Consistent-Field Condition 

Substitution of Eq. (6) into Eq. (7) gives the field G 
at  points B in terms of those at  points on A ; 

The field F' at  points on A in terms of G(x,y)  is given by 
a completely analogous expression. Consequently, when 
these expressions are combined, F' is specified in terms 
of F .  The self-consistent-field condition is obtained by 
putting the field F' after a complete pass (over and 
back) equal to a constant times F at  all points on A .  
Thus, if both mirrors have reflection coefficients of f 1, 
the self-consistent-field condition becomes 

F'(u,v) =yF(u,v)  

Putting r = --ye-Zikd, and imposing the confocal condi- 
tions, g,= 0 and g b =  0, then leads to 

where 

(14) 
The diffraction loss for a complete pass can be found 
from either y or I', and is 

D=I- J ? 1 2 = 1 -  lr12. (15) 
A similar integral equation involving only one inte- 

gration was used by Boyd and Gordon5 to solve the 
confocal-resonator problem for identical rectangular 
mirrors. The full-pass equation, (13), is identical to that 
obtained earlier by Boyd and Kogelnic.6 The integral 
equation for this problem was also found by Goubau 
and Schwering' for the condition imposed on modes 

G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489 

6 G. D. Boyd and H. Kogelnik, Bell System Tech. J. 41, 1347 

G. Goubau and F. Schwerintz. Trans. IRE AP 9. 248 (1961). 

(1961). 

(1962). 

that could be propagated by an iterated system of phase 
transf onners . 

Equation (13) is a homogeneous Fredholm equation 
of the second kind, and can be derived from a variational 
principle in the following way. Consider 

If the function F is varied to make I' an extremum 
( W = O ) ,  it follows that 

Since 6F and 6p are arbitrary and independent vari- 
ations, this variational requirement is equivalent to 
Eq. (13), the confocal optical-resonator-mode equation, 
and the same condition for the complex conjugate of 
D D  
l ' ,  1 ' .  

MAXIMUM POWER-TRANSFER COEFFICIENT 

Without imposing symmetry restrictions of any kind, 
a remarkable similarity can be noticed between the 
problem of finding a function F in Eq. (16) to make r 
an extremum [which led to Eq. (13)] and the problem 
of finding the function F in Eq. (9) to make the power- 
transfer coefficient a maximum. The only difference is 
a change of the sign of u and v in going from x(t,q; u,v) 
to K([,q;a,v). The same variational methods used 
above then lead to the condition for an extremum 
power-transfer coefficient 

With the proper phase adjustment, this equation 
applies to non-confocal situations as well. If 

in Eq. (8) is replaced by F" ([,q), this same expression 
.,, ~ , for the maximum power transfer can be derived for F". 
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All that is needed is an adjustment of phase to keep A 
focused on the center of B. 

A substitution to change the sign of each of the vari- 
ables E ,  q, u, v,  x ,  and y gives 

l d  I 

If the surfaces A and B are both such that each has CZ 
rotation symmetry with respect to the z axis [i.e., for 
each element dxdy at  (x ,y) ,  there is an element of area 
dxdy at  (-x,  - y ) ] ,  then Eq. (19) for F ( - u ,  - v )  is 
identical to Eq. (18) for F(u,v). The nonzero solutions 
of these two equations must then be the same set of 
independent functions. Thus, each of the one or more 
functions F j  that correspond to the maximum value of 
T must have the property Fj ( -u ,  -o)= &j(u,v), where 
E is a constant. Hence, Fj(u,v)=rFj(-u,  - v )  
= e2F~(u,u) ; whereby E= f 1, and Fj(u,v) = f F j  
(-u, -0). When use is made of this result in Eq. (18), 
a substitution to change the sign of u and v gives 

which is identical to the confocal-resonator equation 
(13) with Tmm= or, with the help of Eq. (15), 
Tma= (I-Dmin)+. This completes the derivation of the 
theorem in question. It is now instructive to examine 
the way in which the required symmetry restrictions 
influence the set of eigenfunctions for the confocal- 
resonator equation (13), and to compare the eigen- 
functions of Eqs. (13) and (18). 

COMPLETENESS AND PARITY 

It is not necessary to invoke symmetry restrictions 
for the surface A in order to show that the eigenfunc- 
tions of the extremum power-transfer condition [Eq. 
(18)] constitute a complete orthogonal set of functions 
on A .  The CZ symmetry condition for A ,  however, is 
used in order to obtain a correlation between these 
functions and those for the confocal resonator and to 
show that they represent definite parity states. To see 
how all this comes about, we recall that the suf6cient 
conditions for the eigenfunctions of Eq. (18) to be 
complete8 are 
- 

*Philip M. Morse and Herman Feshbach, Methods of Theo- 
retical Physics (McGraw-Hill Book Co., New York, 1953), p. 774. 

(1) The equation for the eigenvectors corresponds to 
some variational principle, 

(2) .=/I, d u d v / l  dtd?lF(t ,s)P(u,v)x( t ,s;  UP) 

is real (the self-adjoin or hermitian condition for the 
corresponding operator) , and 

(3) J is greater than zero (the corresponding operator 
is positive definite). 

The first of these conditions is already satisfied be- 
cause Eq. (18) was obtained as the result of applying a 
variational principle to Eq. (9). The second condition 
requires that the kernel be real. The imaginary part 
of the kernel of Eq. (18) will vanish if for every element 
of area dxdy a t  (x ,y) ,  there is an element dxdy a t  
( - x ,  -y) .  Thus, if B has C2 symmetry, the kernel is 
real and symmetric and, as is well known, the eigen- 
values are real and eigenfunctions belonging to different 
eigenvalues are orthogonal. 

To investigate the third condition, we write the func- 
tion F in Eq. (18) in terms of its real and imaginary 
parts, F= F,+iFi. If use is then made of a trigonometric 
identity in the integrand of the kernel, 

the expression for J can be written 

+similar terms for Fi  . (21) 

In this expression, it is obvious that J>O for any non- 
zero function, F ,  and finite areas A and B .  Thus, the 
only symmetry requirement needed to show that the 
eigenfunctions of the extremum power-transfer condi- 
tion (18) form a complete orthogonal set on A is the CZ 
rotation-type symmetry for surface B. The fact that T 
can never be negative is in agreement with the physical 
meaning of the power-transfer coefficient, which re- 
stricts T to the range of values : o< T< 1. 

It has already been pointed out following Eq. (19) 
that if surface A also has CZ symmetry, then the inde- 
pendent functions that satisfy Eq. (18) have definite 
parity; i.e., gj(u,v) = &gj( -u ,  -v). With this symmetry 
restriction for A ,  it is also clear that any odd function 
g k  is orthogonal to any even function g j ;  i.e., 

I 
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because the integrand is an odd function and for every 
element dudv a t  (u,v) there is an element of area dudv 
at  (-u, - v ) .  Thus, when degeneracies occur, it  is only 
necessary to consider linear combinations of the func- 
tions g that have the same parity to form the orthogonal 
set. In conclusion, if B has C2 symmetry, the eigen- 
functions of Eq. (18) form a complete orthogonal set on 
A which we choose to be normalized so that 

j k ( U , B )  f j ( u , v ) d u d v  = 8 k j .  (22) li, 
If A also has CZ symmetry, these functions can always 
be selected to have definite parity 

f k  (u,v) = + f k  (-u, -v)* (23) 
If both A and B have C2 symmetry so that Eq. (23) 

holds, then a change of variables in Eq. (18) for one of 
the eigenfunctions, f k ,  converts it into Eq. (13) for the 
same function f k .  Thus, the eigenfunctions of the con- 
focal-resonator equation (13) are identical to those for 
the extremum power-transfer condition (18) when the 
entire problem has Ct symmetry. The eigenvalues have 
the correspondence 

r k = T k  if f k  is even 
r k = - T k  if f k  is odd. 

If instead of first examining the eigenfunctions of 
Eq. (18), we had started with the confocal-resonator 
equation (13), all of the same arguments would have 
been valid up to the proof of the positive definite 
property. The expression for Eq. (13) that is analogous 
to Eq. (21) has negative signs in front of terms involving 
the sine function. If A also has Cz symmetry, the out- 
come is now clear. The positive eigenvalues correspond 
to a complete set of even functions that give zero for the 
sine terms in Eq. (21), and the negative eigenvalues 
correspond to a complete set of odd functions. 

An alternate derivation of the theorem in question 
can be given once it is known that the eigenfunctions of 
Eq. (13) form a complete orthogonal set with definite 
parity. Equations (23), (22), and (13) can then be used 
to integrate Eq. (9) when F= fa, where is the 
maximum 1 r k  I. The result is 

To= Ira/, (24) 

where we have used the fact that T must be positive. 
When F in Eq. (9) is any arbitrary sectionally con- 
tinuous function, it can be expanded in the complete set 

F ( l , r )  = z k a k f k ( & r ) .  ( 25 )  

Equations (23), (22), and (13) can again be used to 
integrate Eq. (9), giving 

T F x k I  a k  l 2 = z k  [ a k  I ' ( A r k ) .  (26) 

When Eq. (24) is multiplied by z k  I a k  I 2, and subtracted 

FIG. 2. Dimensions of the rectangular transmitting 
and receiving apertures. 

from Eq. (26), the result is 

Because lrol is the largest magnitude of the r's, the 
quantity on the right is obviously negative or zero. 
Thus, TO> T F ,  which completes the derivation. 

RECTANGULAR APERTURES 

Several previous calculations have been concerned 
with the radiation patterns produced by truncated 
gaussian illumination  distribution^.^-^ Takeshita,lo for 
example, compares his results for such illumination of 
circular apertures with optical-resonator modes for 
larger Fresnel numbers. The purpose of this section is to 
compare both gaussian and uniform-illumination pat- 
terns with those produced by the optimum power- 
transfer illumination for a wide range of Fresnel 
numbers. Rectangular geometry is selected because it 
is known that the prolate-spheroidal angle functions are 
solutions of Eq. (13) for this case.6 

The dimensions of the rectangular apertures con- 
sidered are shown in Fig. 2. Because the variables of the 
Helmholtz equation separate in rectangular coordinates, 
it is convenient to consider partial solutions of this type 
here. In Eq. (9) we put 

F (E,d = x (SI Y(P>, (28) 

where 
.$=as, u=at 

q=bp,  v=bg. (29) 

In what follows, the notation 

(Ka/d)xmax, P= (Kb/d)ymax 

C= (Ka/d)x, C= (Kb/d)y (30) 

has also been used. 
The differential gain is defined as the time-average 

power per unit solid angle ( d p - / d Q )  radiated in the 
direction Q divided by the time-average power through 
A per unit solid angle, assuming uniform radiation in 
all directions. With the above substitutions into Eq. (9), 

Arden L. Buck, Proc. IEEE AF' 15, 448 (1967). 
Shinya Takeshita, Trans. IEEE AP 16,305 (1968). 
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TABLE I. Expressions used to compute the differential, G(c,.C) 
= (4?rA/h2).g(c)g(c), .and hit:, ?(a,!) = ( 4 ~ = 4 / ~ ~ ) f ( 4 f ( ~ ) ,  gains 
for the vanous illurnnation distnbutions. 

DISTRIBUTION f ( a )  g(c) 

Prolate Spheroidal 
Angle Function 

X(S) = son(a,s) 

the x and y parts separate to give the differential gain as 

where 

Go= 4nA/X2, 
and 

g(c) ll e ic( t - s )X(s )x( t )dsd t  / 2 J I  I X ( s )  I 
(32) 

In place of the power-transfer coefficient, we define 
finite gain in analogy to the definition for differential 
gain. It is proportional to T ,  but has the advantage of 
becoming equal to the differential gain as area B 
approaches zero. With the above substitutions into 
Eq. (9), the finite gain becomes 

F (a,@ E Z/f&JZ/h= Gof(a)f@),  (33) 

where 
sina(t-s) 

X (s)x (t)dsdt / 

The prolate-spheroidal angle functions, Son(a,s), obey 
the integral equation 

2inRo,l(a,l)So,(a,t) = eiatsSon (a,s)ds, (35) ll 
where Roni is the prolate-spheroidal radial function of 
the first kind. It is the property expressed by Eq. (35) 
that gives these angle functions much of their utility- 
they are, so to speak, their own finite Fourier trans- 
forms. It is straightforward to verify that SOn are the 
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functions that solve Eq. (13) for the rectangular case. 
Equation (35) can be used to evaluate Eq. (32) to 
obtain the differential gain when X ( s )  is a prolate- 
spheroidal angle function. An integral theorem due to 
Slepian and Pollak,li 

is useful for integrating an expression like Eq. (34) 
when X ( s )  is a prolate-spheroidal angle function. 

Expressions for f ( a )  and g(c) that are needed for the 
finite and differential gains, respectively, are shown in 
Table I. Actual results for gaussian illumination were 
obtained by a numerical integration of Eqs. (32) and 
(34). The expression (sinc/c)2 for differential gain in the 
case of uniform illumination is a familar result. The 
expression for f ( a )  in the uniform-illumination case was 
obtained from the series expansion for [sina(t- s)/ 
a(t-s)]. Results for the prolate angle-function distri- 
bution were computed using Eqs. (35) and (36) in (32) 
and (34), respectively. In these expressions, Flamer 's  
normalization scheme was used throughout, whereby 
Smn(a,s) becomes equal to the associated Legendre 
polynomial when a= 0 [Smn(O,s) = Pnm(s)], the radial 
function Rmnl[a, (c/a)] approaches the spherical 
Bessel function j,(c) as c/a approaches m, and N,,(a) 
is the normalizing factor 

Smp(a,s)Smn (a,s)ds = & n N m n  (a). il 
The last two expressions for g(c) in Table I are equi- 
valent. One can be obtained from the other by two 
applications of the connecting formula, Smn(c,s) 
= Kmn(i)(c)Rmnl(~,s). Normally, it is easier to use the 
expression for which the arguments of SO,, and .Roni 

I O  

gtc1 
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0.4 

0.2 
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FIG. 3. Differential gain in the main lobe for an angle-function 
illumination of a rectangular aperture. X ( s )  =SO~(CY,S). Gain 
=&A g (c)g (C) /A2. c = kax/d. 

11 D. Slepian and H. 0. Pollak, Bell System Tech. J. 40, 43 
(1961). 
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0.0 fall in their normal ranges. The d coefficients given by l G  

Flammer12 were used to obtain numerical results for the 
angle-function distribution. 

The differential gain for the angle-function distribu- 
tion is shown in Figs. 3 and 4. As a is increased the main 
lobe becomes less sharply peaked, but contains more of 
the total power, which is appropriate for a maximum 
power transfer through a receiving aperture of finite 
size, xmax= (d/Ka)a. The improvement of finite gain 
(proportional to the power-transfer coefficient) that is 

place of a uniform one is shown in Fig. 5. The finite gain 
for the best truncated gaussian-distribution illumination 
is so close to the angle-function results that it would only 
slightly broaden the solid line if plotted on this same 
graph. How this comes about is indicated in part in 
Fig. 6. In this figure, a value of fi  was selected for each 
value of a (or target size) to produce a maximum finite 
gain. When a= 0,  the angle-function, gaussian, and 
uniform distributions are all in exact agreement as 
required by the well-known fact that a uniform distri- 

d 

1.0 
2 

FIG. 6. Comparison of amplitude distribution functions for 

tions. The origin has been translated to a new position for each 
value of a. -X(s) = S O O ( ~ , S ) .  ----X(s) = e d -  b)”. 

achieved by using the distribution in function and for the optimum gausian-function illudna- 

.05t \ I  I I 

bution produces an optimum differential gain. As a is 
increased, the optimum gaussian function is seen in each 
case to agree remarkably well with the angle-function 
distribution. When a becomes very large, the agreement 
becomes even better. In fact, as a+ m, the prolate- 
spheroidal angle functions become the Hermite-Gauss 
functions 

SOn(a,s) -+ NnHn(sv‘a) expC- (d2)s21. (37) 
LI--)W 

FIG. 4. Side lobes of Fig. 3. 

0 I 2 3 4 0 5  

FIG. 5. Comparison of finite gain for angle-function and uniform 
illuminations. The optimum truncated-gaussian illumination 
produces a finite gain so close to the solid curve that the distinction 
can not be seen on this scale. F =  4xAf(a)f@)/kz.-X(s) = SOo(a,s). 
----X(s)=const. 

~~ 

l2 Carson Flammer, Spheroidal Wave  Functions (Stanford 
University Press, Stanford, Calif., 1957). 

At a= 5, the value of fi  for the optimum gaussian func- 
tion, 1.5280, is already close to (~x/2)”~= 1.579. 

CONCLUDING REMARKS 

The close relation between the lowest diffraction-loss 
eigenmode of a confocal resonator and the maximum 
power-transfer coefficient is not surprising. Both are 
dictated by the same physical restriction, a minimum 
diffraction loss. The fact that irradiance distributions 
can be obtained from lasers that are ideally suited for 
communication with distant targets may be a fortunate 
circumstance. The close agreement of the optimum 
truncated gaussian distribution with the prolate angle- 
function distribution for rectangular apertures is con- 
sistent with the fact that the agreement must become 
exact in both limiting cases of large and of very small 
receiving-antenna sizes. 
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